• Title/Summary/Keyword: PCR-chip

Search Result 101, Processing Time 0.046 seconds

Molecular Biomarkers of Octachlorostyrene Exposure in Medaka, Oryzias latipes, using Microarray Technique (Microarray를 이용한 Octachlorostyrene-노출 송사리(Oryzias latipes)에서의 분자생물학적 지표연구)

  • You Dae-Eun;Kang Misun;Park Eun-Jung;Kim IL-Chan;Lee Jae-Seong;Park Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.187-194
    • /
    • 2005
  • Octachlorostyrene (OCS) is a primarily concerning chemical in many countries because of its persistent and bioaccumulative properties in the environment. OCS is not commercially manufactured or used but it may be produced during incineration or chemical synthetic processes involving chlorinated compounds. There are several reports that OCS was found in the waters, sediments, fish, mussels, and also in human tissues. However, systematic studies on the OCS toxicities are scarce in literature. In this study, we tried to get the gene expression data using medaka DNA chip to identify biomarkers of OCS exposure. Medaka (Oryzias latipes.) was exposed to OCS 1 ppm for 2 days and 10 days, respectively. Total RNA was extracted and purified by guanidine thiocyanate method and the Cy3- and Cy5-labelled cDNAs produced by reverse trancription of the RNA were hybridized to medaka microarray. As results, eighty five genes were found to be down-or up regulated by OCS. Some of the genes were listed and confirmed by real-time PCR.

DNA Chip을 이용한 Transcriptional Activation Mechanism 분석

  • 김영준
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.45-60
    • /
    • 2001
  • . Mediator of transcriptional regulation is the evolutionary conserved coactivator complex that plays He central role in the integration and recruitment of diverse regulatory signals and transcription machinery to certain promoters. In yeast, each Mediator subunit is required for transcriptional regulation of a distinct group of genes. In order to decipher the mechanistic roles of Mediator proteins in regulating developmental specific gene expression, we isolated, and analyzed a multiprotein complex containing Drosophila Mediate. homologs (dMediato.). dMediato. interacts with several sequence-sperific transcription factors and basal transcription machinery, and is critical for activated transcription in response to diverse transcriptional activators. In order to elucidate the function of Mediator in metazoan development, we isolated mutants of a conserved Mediate. subunit, Drosophila Med6 (dMed6). dMed6 null homozygotes failed to pupate and died in the third larval instar. Larval mitotic cells and most imaginal discs showed severe defects in proliferation, but no apparent morphological defect was observed in other larval tissues. Clonal analysis of dMed6 mutant cells revealed that dMed6 is essential for cell viability and proliferation of most adult cell types. Drosophila cDNA microarray, quantitative RT-PCR, and in situ expression analyses of developmentally regulated genes in dMed6 mutants showed that transcriptional activation of a subset of genes involved in neuroblast proliferation in the larval brain were most affected. Our results suggest that dMed6 is required in most for transcriptional regulation of a subset of genes important for cell proliferation and metabolism.

  • PDF

Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes (장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴)

  • Bae, Yun-Ui;Moon, Ik-Jae;Seu, Young-Bae;Doh, Kyung-Oh
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.

Detection and Analysis of DNA Hybridization Characteristics by using Thermodynamic Method (열역학법을 이용한 DNA hybridization 특성 검출 및 해석)

  • Kim, Do-Gyun;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.265-270
    • /
    • 2002
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$ $^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.

Identification of Cuts-specific Myogenic Marker Genes in Hanwoo by DNA Microarray (DNA Microarray 분석을 통한 한우 부위별 특이 마커 유전자의 발굴)

  • Lee, Eun-Ju;Shin, Yu-Mi;Lee, Hyun-Jeong;Yoon, Du-Hak;Chun, Tae-Hoon;Lee, Yong-Seok;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.329-336
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are mononuclear, multipotent progenitors of adult skeletal muscle possessing a capacity of forming adipocyte-like cells (ALC). To identify the skeletal muscle type-specific myogenic and adipogenic genes during MSCs differentiation, total RNA was extracted from bovine MSCs, myotube-formed cell (MFC), and ALC from each of Beef shank, Longissimus dorsi, Deep pectoral, and Semitendinosus. DNA microarray analysis (24,000 oligo chip) comparing MSCs with MFC and ALC, respectively, revealed 135 differentially expressed genes (> 4 fold) among four cuts. Real-time PCR confirmed expression of 29 genes. Furthermore, the whole tissue sample RNAs analysis showed 6 differentially expressed genes in Beef shank. Among which, 1 gene in MSCs, 4 in MFC, and 1 in ALCs were highly expressed. This study will provide an insight for better understanding the molecular mechanism of differentiation of skeletal muscle type-specific MSCs. The identified genes may be used as marker to distinguish skeletal muscle types.

Isolation and Functional Identification of BrDSR, a New Gene Related to Drought Tolerance Derived from Brassica rapa (배추 유래 신규 건조 저항성 관련 유전자, BrDSR의 분리 및 기능 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.575-584
    • /
    • 2015
  • Drought stress is a crucial environmental factor determining crop survival and productivity. The goal of this study was to clearly identify a new drought stress-tolerance gene in Brassica rapa. From KBGP-24K microarray data with the B. rapa ssp. pekinensis inbred line 'Chiifu' under drought stress treatment, a gene which was named BrDSR (B. rapa Drought Stress Resistance) was chosen among 738 drought-responsive unigenes. BrDSR function has yet to be determined, but its expression was induced over 6-fold by drought. To characterize BrDSR, the gene was isolated from B. rapa inbred line 'CT001' and found to contain a 438-bp open reading frame encoding a 145 amino acid protein. The full-length cDNA of BrDSR was used to construct an over-expression vector, 'pSL100'. Tobacco transformation was then conducted to analyze whether the BrDSR gene can increase drought tolerance in plants. The BrDSR expression level in T1 transgenic tobacco plants selected via PCR and DNA blot analyses was up to 2.6-fold higher than non-transgenic tobacco. Analysis of phenotype clearly showed that BrDSR-expressing tobacco plants exhibited more tolerance than wild type under 10 d drought stress. Taking all of these findings together, we expect that BrDSR functions effectively in plant growth and survival of drought stress conditions.

Effect of Resistance Training on Skeletal Muscle Gene Expression in Rats: a Beadarray Analysis (저항성 운동이 골격근 유전자 발현에 미치는 영향: Beadarray 분석)

  • Oh, Seung-Lyul;Oh, Sang-Duk
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2013
  • The aim was to examine resistance exercise-related genes after 8 weeks of resistance training. Thirty-two male Sprague-Dawley rats were divided into four groups: 4 weeks sedentary (4 wks CON, n=8), 8 weeks sedentary (8 wks CON, n=8), 4 weeks exercise training (4 wks REG, n=8), and 8 weeks exercise training (8 wks REG, n=8). The rats were trained to climb a 1-m vertical incline (85-degree), with weights secured to their tails. They climbed 10 times, 3 days per week, for 8 consecutive weeks. Skeletal muscle was taken from the flexor halucis longus after the exercise training. After separating the total RNA, large-scale gene expression was investigated by beadarray (Illumina RatRef-12 Expression BeadChip) analysis, and qPCR was used to inspect the beadarray data and to analyze the RNA quantitatively. The detection p-value for the genes was p<0.01, the M-value {M=$log_2$(condition)-$log_2$(reference)} was >1.0, and the DiffScore was >20. In total, the expression of 30 genes significantly increased 4 weeks after the exercise training, and the expression of six genes decreased. At 8 weeks, the expression of five genes significantly increased and that of 12 decreased. Several genes are potentially involved in resistance exercise and muscle hypertrophy, including 1) regulation of cell growth (IGFBP1, PLA2G2A, OKL38); 2) myogenesis (CSRP3); 3) tissue regeneration and muscle development (MUSTN1, MYBPH); 4) hypertrophy (CYR61, ATF3, NR4A3); and 5) glucose metabolism (G6PC, PCK1). These results may help to explain previously reported physiological changes of the skeletal muscle and suggest new avenues for further investigation.

Comparison of Gene Expression Profile in Eutopic Endometria with or without Endometriosis: A Microarray Study (자궁내막증 환자와 대조군에서의 자궁내막 유전자 발현의 차이: Microarray를 이용한 연구)

  • Chung, Min-Ji;Chung, Eun-Jung;Lee, Shin-Je;Kim, Moon-Kyu;Chun, Sang-Sik;Lee, Taek-Hoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • Objective: Pathogenesis of the endometriosis is very complex and the etiology is still unclear. Our hypothesis is that there may be some difference in gene expression patterns between eutopic endometriums with or without endometriosis. In this study, we analyzed the difference of gene expression profile with cDNA microarray. Methods: Endometrial tissues were gathered from patients with endometriosis or other benign gynecologic diseases. cDNA microarray technique was applied to screen the different gene expression profiles from early and late secretory phase endometria of those two groups. Each three mRNA samples isolated from early and late secretory phase of endometrial tissues of control were pooled and used as master controls and labeled with Cy3-dUTP. Then the differences of gene expression pattern were screened by comparing eutopic endometria with endometriosis, which were labeled with Cy5-dUTP. Fluorescent labeled probes were hybridized on a microarray of 4,800 human genes. Results: Twelve genes were consistently over-expressed in the endometrium of endometriosis such as ATP synthase H transporting F1 (ATP5B), eukaryotic translation elongation factor 1, isocitrate dehydrogenase 1 (NADP+), mitochondrial ribosomal protein L3, ATP synthase H+ transporting (ATP5C1) and TNF alpha factor. Eleven genes were consistently down-regulated in the endometriosis samples. Many extracellular matrix protein genes (decorin, lumican, EGF-containing fibulin-like extracellular matrix protein 1, fibulin 5, and matrix Gla protein) and protease/protease inhibitors (serine proteinase inhibitor, matrix metalloproteinase 2, tissue inhibitor of metalloproteinase 1), and insulin like growth factor II associated protein were included. Expression patterns of selected eight genes from the cDNA microarray were confirmed by quantitative RT-PCR or real time RT-PCR. Conclusion: The result of this analysis supports the hypothesis that the endometrium from patients with endometriosis has distinct gene expression profile from control endometrium without endometriosis.

Gene Expression Analyses in Hypothalami of Immobilization-stressed and BoshimgeonbiTang-treated Mice Using cDNA Microarray (구속 스트레스 (immobilization stress)를 가한 rat의 hypothalamus에서의 유전자 발현 및 포심건비탕의 항스트레스 효과에 관한 cDNA microarray 분석)

  • Lee Han Chang;Yeam Mi Jung;Kim Gun Ho;Choi Kang Duk;Lee Seoung Hee;Shim Insop;Lee Hye Jung;Hahm Dae Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1393-1403
    • /
    • 2003
  • The genetic effects of restraint stress challenge on HPA axis and the therapeutic effect of Boshimgeonbi-Tang on the stress were studied with cDNA microarray analyses on hypothalamus using an immobilization-stress mouse as stress model. Male CD-1 mice were restrained in a tightly fitted and ventilated vinyl holder for 2hours once a day, and this challenge was repeated for seven consecutive days. The body weights of the immobilization-stress mice were diminished about 25 percent degree as compared to normal ones. Seven days later, total RNA was extracted from the organs of the mouse, body-labeled with CyDye/sup TM/ fluorescence dyes (Amersham Bioscience Co., NJ), and then hybridized to cDNA microarray chip. Scanning and analyzing the array slides were carried out using GenePix 4000 series scanner and GenePix Pro/sup TM/ analyzing program, respectively. The expression profiles of 109 genes out of 6000 genes on the chip were significantly modulated in hypothalamus by the immobilization stress. Energy metabolism-, lipid metabolism-, apoptosis- and signal transduction-related genes were transcriptionally activated whereas DNA repair-, protein biosynthesis-, and structure integrity-related genes were down-regulated in hypothalamus. The 58 genes were up-regulated by the mRNA expression folds of 1.5 to 7.9. and the 51 genes were down-regulated by 1.5 - 3.5 fold. The 20 genes among them were selected to confirm the expression profiles by RT-PCR. The mRNA expression levels of Tnfrsf1a (apoptosis), Calm2 (cell cycle), Bag3 (apoptosis), Hspe1 (protein folding), Aatk (apoptosis), Dffa (apoptosis), Itgb1 (cell adhesion), Vcam1 (cell adhesion), Fkbp5 (protein folding), BDNF (neuron survival) were restored to the normal one by the treatment of Boshimgeonbi-Tang.

Novel Pathogenic Strain of Watermelon mosaic virus Occurred on Insam (Panax ginseng) (인삼(Panax ginseng)에 발생한 Watermelon mosaic virus의 새로운 병원성 계통)

  • Jung, Won-Kwon;Nam, Moon;Lee, Joo Hee;Park, Chung Youl;Kim, Byoung Hoon;Park, Eun Hye;Lee, Min-A;Kim, Mi-Kyeong;Choi, Hong-Soo;Lee, Jun Seong;Kim, Jeong-Soo;Choi, Jin Kook;Kwon, Tae Ryong;Lee, Key-Woon;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.331-337
    • /
    • 2013
  • A disease, supposedly caused by a virus, was observed from Insam (Panax ginseng) fields of Punggi in year 2006. It has long believed to be a physiological disorder. However, the incidence of the disease has increased every year. When several samples were observed under electron microscope, filamentous virus-like particles were observed. The nucleotide sequences of the virus were analyzed by RT-PCR with specific primer sets derived from the results of DNA chip. The results indicated that the disease was caused by Watermelon mosaic virus (WMV). It revealed that the result of the biological assay by the virus was different from that of WMV previously found in other crops. Therefore, this is the first report that WMV causes the disease in P. ginseng and the virus is named to be WMV-Insam.