• Title/Summary/Keyword: PCR-based identification

Search Result 381, Processing Time 0.022 seconds

Probe-based qPCR Assay for Rapid Detection of Predominant Candida glabrata Sequence Type in Korea

  • Bae, Jinyoung;Lee, Kyung Eun;Jin, Hyunwoo
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • Recent years have seen an increase in the incidence of candidiasis caused by non-albicans Candida (NAC) species. In fact, C. glabrata is now second only to C. albicans as the most common cause of invasive candidiasis. Therefore, the rapid genotyping specifically for C. glabrata is required for early diagnosis and treatment of candidiasis. A number of genotyping assays have been developed to differentiate C. glabrata sequence types (STs), but they have several limitations. In the previous study, multi-locus sequence typing (MLST) has performed with a total of 101 C. glabrata clinical isolates to analyze the prevalent C. glabrata STs in Korea. A total of 11 different C. glabrata STs were identified and, among them, ST-138 was the most commonly classified. Thus, a novel probe-based quantitative PCR (qPCR) assay was developed and evaluated for rapid and accurate identification of the predominant C. glabrata ST-138 in Korea. Two primer pairs and hybridization probe sets were designed for the amplification of internal transcribed spacer 1 (ITS1) region and TRP1 gene. Analytical sensitivity of the probe-based qPCR assay was 100 ng to 10 pg and 100 ng to 100 pg (per 1 μL), which target ITS1 region and TRP1 gene, respectively. This assay did not react with any other Candida species and bacteria except C. glabrata. Of the 101 clinical isolates, 99 cases (98%) were concordant with MLST results. This novel probe-based qPCR assay proved to be rapid, sensitive, highly specific, reproducible, and cost-effective than other genotyping assay for C. glabrata ST-138 identification.

First Molecular Characterization of Hypoderma actaeon in Cattle and Red Deer (Cervus elaphus) in Portugal

  • Ahmed, Haroon;Sousa, Sergio Ramalho;Simsek, Sami;Anastacio, Sofia;Kilinc, Seyma Gunyakti
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.653-658
    • /
    • 2017
  • Hypoderma spp. larvae cause subcutaneous myiasis in several animal species. The objective of the present investigation was to identify and characterize morphologically and molecularly the larvae of Hypoderma spp. collected from cattle (Bos taurus taurus) and red deer (Cervus elaphus) in the district of Castelo Branco, Portugal. For this purpose, a total of 8 larvae were collected from cattle (n=2) and red deer (n=6). After morphological identification of Hypoderma spp. larvae, molecular characterization was based on PCR-RFLP and mitochondrial CO1 gene sequence analysis. All larvae were morphologically characterized as the third instar larvae (L3) of H. actaeon. Two restriction enzymes were used for molecular identification of the larvae. TaqI restriction enzyme was not able to cut H. actaeon. However, MboII restriction enzyme differentiated Hypoderma species showing 210 and 450 bp bands in H. actaeon. Furthermore, according to the alignment of the mt-CO1 gene sequences of Hypoderma species and to PCR-RFLP findings, all the identified Hypoderma larvae were confirmed as H. actaeon. This is the first report of identification of Hypoderma spp. (Diptera; Oestridae) from cattle and red deer in Portugal, based on morphological and molecular analyses.

A Reliable "Direct from Field" PCR Method for Identification of Mycorrhizal Fungi from Associated Roots

  • Kuhnann, Christoph;Kim, Seak-Jin;Lee, Sang-Sun;Harms, Carsten
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.196-199
    • /
    • 2003
  • A very reliable and specific method for the identification of fungi in ectotrophic mycorrhizal symbiosis was developed using a specific PCR assay based on the amplification of the ITS1 region. To obtain specific data, an ITS-diagnostic assay was carried out that reveals genera and species specific sequences. Here, an application of one method is presented, which covers the identification of pure mycelia, basidiocarps as well as mixed samples such as ectomycorrhizal roots that were mingled with remains of the host plant. For this purpose a protocol was established that allowed the extraction of DNA from single mycorrhizal roots. In order to perform a specific ITS analysis we generated a new ITS-primer(ITS8) by a multiple alignment of five different genera and species of mycorrhizal fungi. The utilization of ITS1 and ITS8 resulted in specific PCR amplicons, which were characterized by sequencing without purification steps, even when the template DNA was associated with roots.

Development of a Species Identification Method for the Egg and Fry of the Three Korean Bitterling Fishes (Pisces: Acheilognathinae) using RFLP (Restriction Fragment Length Polymorphism) Markers (제한절편 길이 다형성(RFLP) 분자마커를 이용한 납자루아과 담수어류 3종의 난과 치어 종 동정 기법 개발)

  • Choi, Hee-kyu;Lee, Hyuk Je
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.352-358
    • /
    • 2018
  • This study aimed to develop a species identification method for the egg and fry of the three Korean bitterling fishes (Pisces: Acheilognathinae), including Acheilognathus signifer, Acheilognathus yamatsutae and Rhodeus uyekii based on the PCR-based Restriction Fragment Length Polymorphism (RFLP) markers. We conducted a field survey on the Deokchicheon River from the North Han River basin, where the three Acheilognathinae species co-occur, and also analyzed the existing sequence dataset available from the GenBank. We found coexistence of the three species at the study site. The egg and fry were obtained from the host mussels (Unio douglasiae sinuolatus) by hand from May to June 2015 and in May 2017. To develop PCR-based RFLP markers for species identification of the three Acheilognathinae fish species, restriction enzymes pinpointing species-specific single nucleotide variation (SNV) sites in mitochondrial DNA COI (cytochrome oxidase I) and cyt b (cytochrome b) genes were determined. Genomic DNA was extracted from the egg and fry and RFLP experiments were carried out using restriction enzymes Apal I, Stu I and EcoR V for A. signifer, A. yamatsutae and R. uyekii, respectively. Consequently, unambiguous discrimination of the three species was possible, as could be seen in DNA band patterns from gel electrophoresis. Our developed PCR-based RFLP markers will be useful for the determination of the three species for the young and would assist in studying the spawning patterns and reproductive ecology of Acheilognathinae fishes. Furthermore, we believe the obtained information will be of importance for future maintenance, management and conservation of these natural and endangered species.

Identification of Nocardia seriolae by polymerase chain reaction (PCR에 의한 Nocardia seriolae의 검출)

  • Park, Myoung-Ae;Cho, Mi-Young;Kim, Myoung-Sug;Kim, Jae-Hoon;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.22 no.1
    • /
    • pp.85-90
    • /
    • 2009
  • A method for the identification of Nocardia seriolae, the causative agent of nocardiosis in cultured fishes, using PCR was developed in the study. A PCR primer set specific to N. seriolae was designed based on 16S-23S rRNA sequence of various Nocardia species accessed in GenBank. Designed PCR primer set, Nseri-F (5'-GCA AAC TCT TCG AAC AGT CG-3') and Nseri-R (5'-GGA TAT CAG GAC TTA CCG GC-3'), amplifies the target regions of N. seriolae only, but not 4 other Nocardia species, N. asteroides, N. crassostreae, N. farcinica and N. salmonicida.

A Rapid and Universal Direct PCR Method for Macrofungi

  • Park, Mi-Jeong;Lee, Hyorim;Ryoo, Rhim;Jang, Yeongseon;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.455-467
    • /
    • 2021
  • Macrofungi are valuable resources as novel drug candidates, new biomaterials, and edible materials. Recently, genetic approaches pertaining to macrofungi have been continuously growing for their identification, molecular breeding, and genetic engineering. However, purification and amplification of fungal DNA is challenging because of the rigid cell wall and presence of PCR inhibitory metabolites. Here, we established a direct PCR method to provide a rapid and efficient method for PCR-grade macrofungal DNA preparation applicable to both conventional PCR and real-time PCR. We first optimized the procedure of lysis and PCR using the mycelia of Lentinula edodes, one of the most widely consumed macrofungal species. Lysates prepared by neutralizing with (NH4)2SO4 after heating the mycelia in a mixture of TE buffer and KOH at 65℃ for 10 min showed successful amplification in both conventional and real-time PCR. Moreover, the addition of bovine serum albumin to the PCR mixture enhanced the amplification in conventional PCR. Using this method, we successfully amplified not only internal transcribed spacer fragments but also low-copy genes ranging in length from 500 to 3,000 bp. Next, we applied this method to 62 different species (54 genera) of macrofungi, including edible mushrooms, such as Pleurotus ostreatus, and medicinal mushrooms such as Cordyceps militaris. It was found that our method is widely applicable to both ascomycetes and basidiomycetes. We expect that our method will contribute to accelerating PCR-based approaches, such as molecular identification, DNA marker typing, gene cloning, and transformant screening, in macrofungal studies.

Rapid Detection and Identification of Cucumber Mosaic Virus by Reverse Transcription and Polymerase Chain Reaction (RT-PCR) and Restriction Analysis (역전사 중합효소련쇄반응(RT-PCR)과 제한효소 분석을 이용한 오이 모자이크 바이러스의 신속한 검정과 동정)

  • Park, Won Mok
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Based upon the nucleotide sequence of As strain of cucumber mosaic virus (CMV-As0 RNA4, coat protein (CP) gene was selected for the design of oligonucleotide primers of polymerase chain reaction (PCR) for detection and identification of the virus. Reverse transcription and polymerase chain reaction (RT-PCR) was performed with a set of 18-mer CMV CP-specific primers to amplify a 671 bp fragment from crude nucleic acid extracts of virus-infected leaf tissues as well as purified viral RNAs. The minimum concentrations of template viral RNA and crude nucleic acids from infected tobacco tissue required to detect the virus were 1.0 fg and 1:65,536 (w/v), respectively. No PCR product was obtained when potato virus Y-VN RNA or extracts of healthy plants were used as templates in RT-PCR using the same primers. The RT-PCR detected CMV-Y strain as well as CMV-As strain. Restriction analysis of the two individual PCR amplified DNA fragments from CMV-As and CMV-Y strains showed distinct polymorphic patterns. PCR product from CMV-As has a single recognition site for EcoRI and EcoRV, respectively, and the product from CMV-Y has no site for EcoRI or EcoRV but only one site for HindIII. The RT-PCR was able to detect the virus in the tissues of infected pepper, tomato and Chinese cabbage plants.

  • PDF

Identification of Heterodera glycines (Tylenchida; Heteroderidae) Using qPCR

  • Ko, Hyoung-Rai;Kang, Heonil;Park, Eun-Hyoung;Kim, Eun-Hwa;Lee, Jae-Kook
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.654-661
    • /
    • 2019
  • The soybean cyst nematode, Heterodera glycines, is a major plant-parasitic nematode that has caused important economic losses to Korea's soybean production. Four species of cyst nematodes, H. schachtii, H. glycines, H. trifolii, and H. sojae, all belong to schachtii group are coexist in field soil in Korea. The rapid identification of the nematode is crucial for preventing crop damage and in decision making for controlling this nematode. This study aimed to develop a species-specific primer set for quantitative PCR (qPCR) assay of H. glycines. The specific primer set (HGF1 and HGR1) for H. glycines was designed based on the cytochrome c oxidase subunit I (COI) sequence of mitochondrial DNA. After optimization, it is possible to identify the H. glycines using a qPCR assay with DNA extracted from a single cyst and single second-stage juvenile (J2). The specificity was confirmed by the absence of SYBR fluorescent signals of three other Heterodera species. A serial dilution of DNA extracted from a single cyst was obtained for the sensitivity test. The result showed that the standard curve of the test had a highly significant linearity between DNA concentration and Ct value (R2 = 0.996, slope = -3.49) and that the detection limit concentration of DNA of the primer set was 10 pg of DNA per reaction. Our findings suggested that H. glycines could be distinguished from H. sojae and other Heterodera species when a qPCR assay is used with a specific primer set.

Identification of Cryptosporidium in Environmental Sample using Nested PCR-RFLP and DNA Sequencing (Nested PCR-RFLP 및 DNA Sequencing을 이용한 환경시료에서의 크립토스포리디움 동정)

  • Park, Sangjung;Jeong, Hyanghee
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.817-822
    • /
    • 2008
  • In order to identify various Cryptosporidium species in environment, nested PCR-RFLP and DNA sequencing method were used. The sensitivity of nested PCR-RFLP based on 18s rRNA gene was shown to 1 oocyst. Therefore, we applied nested PCR-RFLP method to environmental samples. As a result, only 4 samples out of 8 samples confirmed as Cryptosporidium parvum by standard method of Cryptosporidium were identified as Cryptosporidium parvum by nested PCR-RFLP and DNA sequencing method. The rest of 4 samples among 8 samples were identified as Cryptosporidium muris, Cryptosporidium bailey. Therefore, in addition to standard method of Cryptosporidium, supplementary verification through nested PCR-RFLP and DNA sequencing should be needed to give more accurate information about risk of Cryptosporidium.