• Title/Summary/Keyword: PCR-based Markers

Search Result 224, Processing Time 0.031 seconds

Development of SNP Molecular Markers Related to Seed-hair Characteristic Based on EST Sequences in Carrot (당근 EST 염기서열을 이용한 종자모 형질 관련 SNP 분자표지 개발)

  • Oh, Gyu-Dong;Shim, Eun-Jo;Jun, Sang-Jin;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • Carrot (Daucus carota L. var. sativa) is one of the most extensively used vegetable crops in the world and a significant source of nutrient because of its high content of ${\beta}$-carotene, well known as the precursor of vitamin A carotenoid. However, seed-hairs generated and elongated from the epidermal cell of seeds inhibit absorption and germination by various factors such as carotol and so on. Accordingly, mechanical hair removal process is essential before commercialization of carrot seeds. Because of this process, producers will have additional losses such as time consuming, manpower, capital and so on. Furthermore, physical damage of seeds causes irregular germination rate. To overcome such cumbersome weaknesses, new breeding program for developing hairless-seed carrot cultivar has been needed and studies for molecular markers related to seed-hair characteristic is needed for a new breeding program. Therefore, in this study, cDNA libraries from seeds of short-hair seed phenotype CT-SMR 616 OP 659-1 line, hairy-seed phenotype CT-SMR 616 OP 677-14 line and short-hair seed phenotype CT-ATR 615 OP 666-13 line, hairy-seed phenotype CT-ATR 615 OP 671-9 were constructed, respectively. Furthermore, 1,248 ESTs in each line, total 4,992 ESTs were sequenced. As a result, 19 SNP sites and 14 SNP sites in each of 2 combinations were confirmed by analyzing these EST sequences from short-hair and hairy-seed lines. Then we designed SNP primer sets from EST sequences of SNP sites for high resolution melting (HRM) analysis. Designed HRM primers were analyzed using hairy seed phenotype CT-SMR 616 OP 1040 line and short-hair seed phenotype CT-SMR 616 OP 1024, 1025, 1026 lines. One set of HRM primers showed specific difference between the melting curves of hairy and short-hair seed phenotype lines. Based on this result, allele-specific (AS) PCR primers were designed for easier selection between hairy-seed carrot and hairless seed carrot. These results of HRM and AS-PCR are expected to be useful in breeding of hairless seed carrot cultivar as a molecular marker.

Polymorphism of inter simple sequence repeat markers in Hypsizygus marmoreus (Inter Simple Sequence Repeat(ISSR) 마커를 활용한 느티만가닥버섯(Hypsizigus marmoreus) 종내 다형성 분석)

  • Oh, Youn-Lee;Nam, Yun-Geul;Jang, Kab-Yeul;Kong, Won-Sik;Oh, Min ji;Im, Ji-Hoon;Choi, In-Geol
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.273-278
    • /
    • 2017
  • Hypsizygus marmoreus is a mushroom with abundant flavor and medicinal properties. However, its application is limited by problems such as long cultivation period, low biological efficiency, and microbiological contamination; therefore, there is a substantial need for development of new cultivars of this species. In this study, 55 strains of H. marmoreus were subjected to inter simple sequence repeat (ISSR) analysis to identify markers for the selection of mother strains for breeding from the collected germplasm. ISSR 13 and 15 were confirmed as polymorphic markers. The three strains (KMCC03106, KMCC03107, and KMCC03108) with white cap color were found to be genetically closely related upon UPGMA analysis of both ISSR 13 and 15. Based on the PCR analysis results for ISSR 15, the collected germplasm were differentiated into three groups according to the strain collection year. Thus, ISSR 15 could be a marker for determining the phylogeny of cap color and genetic variations according to the strain collection year. These results suggest that ISSR markers can be effective tools for the selection of mother strains for breeding of H. marmoreus.

Genetic Analysis of Flower Color Traits in Calanthe discolor, C. sieboldii, and Variants Using Molecular Linkage Map (연관지도를 이용한 새우난초, 금새우난초, 변이종의 화색의 유전분석)

  • Cho, Dong-Hoon;Chung, Mi-Young;Jee, Sun-Ok;Kim, Chang-Kil;Chung, Jae-Dong;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1239-1244
    • /
    • 2009
  • This study was conducted to clarify the genetic relationship between Calanthe discolor, C. sieboldii and variants, and the cause of flower color variations by using a molecular linkage map and a quantitative trait loci (QTL) analysis for flower and lip color in Calanthe species native to Korea. Twenty plants were included in three C. discolor and three C. sieboldii, and fourteen variants were obtained from their habitat, Jeju-do in Korea. The flowers of C. discolor were brownish red, the values of Commission Internationale de I'Eclairage (CIE) Lab were between 40 and 50. The flowers of C. sieboldii were yellowish, the values of CIE Lab were between 110 and 130. The variants had various mixed colors that were thought to have originated from natural hybridization between C. discolor and C. sieboldii, and the values of CIE Lab were between 50 and 70. The colors of the lips were usually divided into white and yellow. C. discolor had a white lip, C. sieboldii had a yellow one, and the variants had a white to yellow one. The CIE Lab value of each color was 90 in white and 110 to 120 in yellow lips. A molecular linkage mapping was constructed based on the segregation of 154 RAPD markers using a MAPL program. Sixteen linkage groups containing 66 markers were established. It covered a total map distance of 220.4 cM. The distance between adjacent markers ranged from 0 to 6.6 cM, with an average distance of 3.3 cM. These markers are thought to be closely associated with flower and lip color expression. Among the 16 molecular linkage groups, 3 QTLs had flower color trait loci and 1 QTL had lip color trait loci.

Toxoplasmosis in a Pet Peach-Faced Lovebird (Agapornis roseicollis)

  • Cooper, Madalyn K.;Slapeta, Jan;Donahoe, Shannon L.;Phalen, David N.
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.749-753
    • /
    • 2015
  • Toxoplasma gondii atypical type II genotype was diagnosed in a pet peach-faced lovebird (Agapornis roseicollis) based on histopathology, immunohistochemistry, and multilocus DNA typing. The bird presented with severe neurological signs, and hematology was suggestive of chronic granulomatous disease. Gross post-mortem examination revealed cerebral hemorrhage, splenomegaly, hepatitis, and thickening of the right ventricular free wall. Histologic sections of the most significant lesions in the brain revealed intralesional protozoan organisms associated with malacia, spongiform changes, and a mild histiocytic response, indicative of diffuse, non-suppurative encephalitis. Immunohistochemistry confirmed the causative organisms to be T. gondii. DNA isolated from the brain was used to confirm the presence of T. gondii DNA. Multilocus genotyping based on SAG1, altSAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico markers demonstrated the presence of ToxoDB PCR-RFLP genotype #3 and B1 gene as atypical T. gondii type II. The atypical type II strain has been previously documented in Australian wildlife, indicating an environmental transmission route.

Genetic Variability Based on Randomly Amplified Polymorphic DNA in Mistletoe Fig (Ficus deltoidea Jack) Collected from Peninsular Malaysia

  • Bhore, Subhash Janardhan;Arneida H., Nurul;Shah, Farida Habib
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • Ficus deltoidea Jack is an important and popular medicinal plant species found in the Malaysia. Plants are being collected and used based on morphology and authentication to prevent adulteration is not in practice. In this study, twenty-six accessions of F. deltoidea Jack were collected from Kelantan and Terengganu states of Peninsular Malaysia to examine their genetic similarities and differences using randomly amplified polymorphic DNA (RAPD) technique. Out of 20 arbitrary primers, two primers (D-10 and D-11) were selected which produced reliable DNA polymorphism. D-10 and D-11 primers generated 138 RAPD bands ranging from 250 bp to 3000 bp. Ninety-nine of them were polymorphic loci (72%) and thirty-nine were nonpolymorphic loci (28%). A total of 56 bands with polymorphic loci were amplified with primer D-10 and analyzed by cluster analysis and UPGMA to present a dendrogram depicting the degree of genetic relationship among 26 accessions. Eight RAPD markers were sequenced to determine their identity. RAPD analysis showed the genetic diversity among 26 accessions of F. deltoidea Jack. The RAPD profile and RAPD marker sequences reported in this paper could be used in plant and/or plant material authentication. This study also suggested that RAPD can be a useful technique to study DNA polymorphism in F. deltoidea Jack.

  • PDF

Isolation and Identification of Short Term Drought-Induced Genes in Zea mays L. Leaves

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Choi, Gi Jun;Ji, Hee Jung;Kim, Won Ho;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.237-241
    • /
    • 2017
  • Drought is one of the detrimental factors that impair plant growth and productivity. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in maize leaves in response to drought stress. Two-week-old maize seedlings were exposed to drought (DT) by suspending water supply. DEGs were screened after 3 days of DT-treated samples using the ACP-based technique. Several DEGs encoding 16.9 protein, antimicrobial protein, hypothetical protein NCLIV_068840, thioredoxin M-type were identified in maize leaves under drought stress. These genes have putative functions in plant defense response, growth and development. These identified genes would be useful for predictive markers of plant defense, and growth responses under drought stress in plants.

Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat

  • Singh, Lovepreet;Anderson, James A;Chen, Jianli;Gill, Bikram S;Tiwari, Vijay K;Rawat, Nidhi
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gelbased gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Comparison of the Serum Cholesterol, Insulin Resistance and Markers of Metabolic Syndrome Based on Hepatitis C Virus RNA (C형 간염 바이러스 RNA 유무에 따른 지질, 인슐린저항성 및 대사증후군 지표 수준의 차이)

  • Cho, Sung-Hwan;Kim, Yun-Jin;Lee, Sang-Yeoup;Cho, Byung-Mann;Hwang, Hye-Lim;Yi, Yu-Hyeon;Cho, Young-Hye;Tak, Young-Jin;Jeong, Dong-Wook;Lee, Seung-Hun;Lee, Jeong-Gyu
    • Journal of agricultural medicine and community health
    • /
    • v.41 no.4
    • /
    • pp.205-216
    • /
    • 2016
  • Objectives: We compared the difference of lipid, insulin resistance and metabolic markers based on HCV RNA in Korean adults.Methods: This was a cross-sectional study of 222 subjects visited the health promotion center of Pusan nationaluniversity hospital from 2004 to 2007. Subjects were anti-HCV antibody positive and were performed RT-PCR for HCV RNA. The HCV RNA (+) group were 85 subjects, HCV RNA (-) control group were 115 subjects, and the HCV RNA (-) but past positive group were 22 subjects. We performed anthropometry, anti-HCV, RT-PCR, plasma concentrations of insulin, total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglyceride.Results: BMI, waist circumference, blood pressure, fasting plasma glucose, triglyceride, HDL cholesterol, insulin resistance such as HOMA-IR and QUICKI were not significantly different between HCV RNA positive and negative groups. The serum total cholesterol and LDL cholesterol level were significantly lower in the HCV RNA positive group than in the negative group ($186.24{\pm}37.63$ vs $197.22{\pm}37.23$ mg/dl, p=0.041, $111.66{\pm}34.06$ vs $121.38{\pm}35.50$ mg/dl, p=0.042). After adjusting age and sex, high total cholesterol (${\geq}200mg/dl$) (adjusted OR=0.51, 95%CI 0.28-0.94, p=0.03) and high LDL cholesterol (${\geq}130mg/dl$) (adjusted OR=0.46, 95%CI 0.24~0.87, p=0.02) were inversely associated with being HCV RNA positive (p<0.05). Conclusion: The serum total cholesterol and LDL-cholesterol level were significantly lower in HCV RNA (+) group than in HCV RNA (-) group, but not in HCV RNA (-) but past positive group. Prospective cohort studies are needed to clarify the relationship between HCV RNA and metabolic markers.

Multiplex Real-time PCR for RRM1, XRCC1, TUBB3 and TS mRNA for Prediction of Response of Non-small Cell Lung Cancer to Chemoradiotherapy

  • Wu, Guo-Qiu;Liu, Nan-Nan;Xue, Xiu-Lei;Cai, Li-Ting;Zhang, Chen;Qu, Qing-Rong;Yan, Xue-Jiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4153-4158
    • /
    • 2014
  • Background: This study was aimed to establish a novel method to simultaneously detect expression of four genes, ribonucleotide reductase subunit M1(RRM1), X-ray repair cross-complementing gene 1 (XRCC1), thymidylate synthase (TS) and class III ${\beta}$-tubulin (TUBB3), and to assess their application in the clinic for prediction of response of non-small cell lung cancer (NSCLC) to chemoradiotherapy. Materials and Methods: We have designed four gene molecular beacon (MB) probes for multiplex quantitative real-time polymerase chain reactions to examine RRM1, XRCC1, TUBB3 and TS mRNA expression in paraffin-embedded specimens from 50 patients with advanced or metastatic carcinomas. Twenty one NSCLC patients receiving cisplatin-based first-line treatment were analyzed. Results: These molecular beacon probes could specially bind to their target genes in homogeneous solutions. Patients with low RRM1 and XRCC1 mRNA levels were found to have apparently higher response rates to chemoradiotherapy compared with those with high levels of RRM1 and XRCC1 expression (p<0.05). The TS gene expression level was not significantly associated with chemotherapy response (p>0.05). Conclusions: A method of simultaneously detecting four molecular markers was successfully established and applied for evaluation of chemoradiotherapy response. It may be a useful tool in personalized cancer therapy.