• Title/Summary/Keyword: PCR-based Markers

Search Result 221, Processing Time 0.039 seconds

Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers

  • Kim, Eiseul;Cho, Eun-Ji;Yang, Seung-Min;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.280-289
    • /
    • 2021
  • Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Development of Gene Based STS Markers in Wheat

  • Lee, Sang-Kyu;Heo, Hwa-Young;Kwon, Young-Up;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The objective of this study is to develop the gene based sequence tagged site (STS) markers in wheat. The euchromatin enriched genomic library was constructed and the STS primer sets were designed using gene based DNA sequence. The euchromatin enriched genomic (EEG) DNA library in wheat was constructed using the $Mcr$A and $Mcr$BC system in $DH5{\alpha}$ cell. The 2,166 EEG colonies have been constructed by methylated DNA exclusion. Among the colonies, 606 colonies with the size between 400 and 1200 bp of PCR products were selected for sequencing. In order to develop the gene based STS primers, blast analysis comparing between wheat genetic information and rice genome sequence was employed. The 227 STS primers mainly matched on $Triticum$ $aestivum$ (hexaploid), $Triticum$ $turgidum$ (tetraploid), $Aegilops$ (diploid), and other plants. The polymorphisms were detected in PCR products after digestion with restriction enzymes. The eight STS markers that showed 32 polymorphisms in twelve wheat genotypes were developed using 227 STS primers. The STS primers analysis will be useful for generation of informative molecular markers in wheat. Development of gene based STS marker is to identify the genetic function through cloning of target gene and find the new allele of target trait.

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Development of Sequence-Based DNA Markers for Evaluation of Phylogenetic Relationships in Korean Watermelon Varieties

  • Lee, Hee-Jeong;Cho, Hwa-Jin;Lee, Kyung-Ah;Lee, Min-Seon;Shin, Yoon-Seob;Harn, Chee-Hark;Yang, Seung-Gyun;Nahm, Seok-Hyeon
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • Phylogenetic relationships in Korean watermelons were evaluated by genetic similarity coefficients using 15 SSR(simple sequence repeat), 14 SCAR(sequence characterized amplified region) and 14 CAPS(sequence characterized amplified region) markers. The SSR markers were selected from previously reported melon and watermelon SSRs through testing polymorphisms within a set of commercial $F_1$ varieties. The SCAR and CAPS markers were developed from polymorphic AFLP(amplified fragment length polymorphism) markers between inbred lines 'BN4001' and 'BN4002'. From the AFLP analysis, 105 polymorphic fragments were identified between the inbred lines using 1,440 primer combinations of EcoRI+CNNN and XbaI+ANNN. Based on the sequencing data of these polymorphic fragments, we synthesized sequence specific primer pairs and detected clear and reliable polymorphisms in 27 primer pairs by indels(insertion/deletion) or RFLP(restriction fragment length polymorphism). A total of 43 sequence-based PCR markers were obtained and polymorphic information content(PIC) was analyzed to measure the informativeness of each marker in watermelon varieties. The average PIC value of SCAR markers was 0.41, which was similar to that of SSR markers. Genetic diversity was also estimated by using these markers to assess the phylogenetic relationships among commercial varieties of watermelon. These markers differentiated 26 Korean watermelon varieties into two major phylogenetic groups, but this grouping was not significantly correlated with their morphological and physiological characteristics. The mean genetic similarity was 66% within the complete set of 26 commercial varieties. In addition, these sequence-based PCR markers were reliable and useful to identify cultivars and genotypes of watermelon.

  • PDF

Screening of the Dominant Rice Blast Resistance Genes with PCR-based SNP and CAPS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Kwon, Jin-Hyeuk;Kim, Yeong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The objective of this study was to determine the genetic diversities of major rice blast resistance genes among 84 accessions of aromatic rice germplasm. Eighty four accessions were characterized by a dominant 11 set of PCR-based SNP and CAPS marker, which showed the broad spectrum resistance and closest linkage to seven major rice blast resistance (R) genes, Pia, Pib, Pii, Pi5 (Pi3), Pita (Pita-2), and Pi9 (t). The allele specific PCR markers assay genotype of SCAR and STS markers was applied to estimate the presence or absence of PCR amplicons detected with a pair of PCR markers. One indica accession, Basmati (IT211194), showed the positive amplicons of five major rice blast resistance genes, Pia, Pi5 (Pi3), Pib, Pi-ta (Pi-ta2), and Pik-5 (Pish). Among 48 accessions of the PCR amplicons detected with yca72 marker, only five accessions were identified to Pia gene on chromosome 11. The Pib gene was estimated with the NSb marker and was detected in 65 of 84 accessions. This study showed that nine of 84 accessions contained the Pii gene and owned Pi5 (Pi3) in 42 of 84 accessions by JJ817 and JJ113-T markers, which is coclosest with Pii on chromosome 9. Only six accessions were detected two alleles of the Pita or Pita-2 genes. Three of accessions were identified as the Pi9 (t) gene locus.

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.

Individual Identification using The Multiplex PCR with Microsatellite Markers in Swine

  • Kim, Lee-Kung;Park, Chang-Min;Park, Sun-Ae;Kim, Seung-Chang;Chung, Hoyoung;Chai, Han-Ha;Jeong, Gyeong-Yong;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.205-211
    • /
    • 2013
  • The swine is one of the most widespread mammalian throughout the whole world. Presently, many studies concerning microsatellites in swine, especially domestic pigs, have been carried out in order to investigate general diversity patterns among either populations or breeds. Until now, a lot of time and effort spend into a single PCR method. But simple and more rapid multiplex PCR methods have been developed. The purpose of this study is to develop a robust set of microsatellites markers (MS marker) for traceability and individual identification. Using multiplex-PCR method with 23 MS marker divided 2 set, various alleles occurring to 5 swine breed (Berkshire, Landrace, Yorkshire, Duroc and Korea native pig) used markers to determine allele frequency and heterozygosity. MS marker found 4 alleles at SW403, S0227, SWR414, SW1041 and SW1377. The most were found 10 alleles at SW1920. Heterozygosity represented the lowest value of 0.102 at SWR414 and highest value of 0.861 at SW1920. So, it was recognized appropriate allele frequency for individual identification in swine. Using multiplex-PCR method, MS markers used to determine individual identification biomarker and breed-specific marker for faster, more accurate and lower analysis cost. Based on this result, a scientific basis was established to the existing pedigree data by applying genetics additionally. Swine traceability is expected to be very useful system and be conducted nationwide in future.

Mendelian Inheritance of Inter-Simple Sequence Repeats Markers in Abies Koreans Wilson (구상나무에 있어서 Inter-Simple Sequence Repeats Marker의 유전양식(遺傳樣式))

  • Hong, Yong-Pyo;Cho, Kyung-Jin;Kim, Yong-Yul;Shin, Eun-Kyeong
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.422-428
    • /
    • 1998
  • Polymerase chain reaction(PCR)-based inter-simple sequence repeats(I-SSR) markers were analyzed in 48 megagametophytes of a single tree of Abies koreana $W_{ILS}$. Nineteen of the 35 primers, screened with 6 megagametophyte DNA and produced the clearest amplification products in the preliminary experiment, were used for PCR with 48 megagametophyte DNAs sampled from a single tree. On the basis of the chi-square test, a total of 51 amplicons, amplified by the 19 primers, were revealed to be segregated according to the Mendelian ratio(i.e., 1 : 1 segregation ratio) in the 48 megagametophytes at 5% significance level. Based on the linkage analysis, the observed 51 Mendelian loci turned out to be unlinked each other, which suggested that they are evenly distributed in the genome. However, majority of RAPD markers are known to belong to the independent linkage blocks, which frequently results in the amplification of RAPD markers from the restricted regions of the genome. Owing to the nature of even distribution of the 51 loci observed in this study, the I-SSR markers could give better resolution of estimating genetic diversity from the whole genome than RAPD markers. And I-SSR markers are also more suitable than RAPD markers for reconstructing phylogenetic relationship by a cladistic method which requires to fulfil the assumption of independent evolution of the different characters.

  • PDF

Development and Verification of and Single Nucleotide Polymorphism Markers toDetermine Country of Origin of Korean and Chinese Scapharca subcrenata (한국산과 중국산 새꼬막(Scapharca subcrenata)의 원산지 판별을 위한 SNP 마커의 개발 및 검증)

  • Seong Seok Choi;Seung Hyun Yoo;Yong Bae Seo;Jong Oh Kim;Ik Jung Kwon;So Hee Bae;Gun Do Kim
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1025-1035
    • /
    • 2023
  • In this study, we analyzed SNPs that appear between Korean and Chinese Scapharca subcrenata using the nucleotide sequence data of S. subcrenata analyzed by genotyping by sequencing (GBS). To distinguish the country of origin for S. subcrenata in Korean and Chinese, we developed a primer set as single nucleotide polymorphism (SNP) markers for quantitative real-time PCR (qPCR) analysis and validated by sequencing SNPs. A total of 180 samples of S. subcrenata were analyzed by genotyping by sequencing, and 15 candidate SNPs were selected. SNP marker selection for country of origin were identified through real-time qPCR. Insertion 1 and SNP 21 markers showed the most distinct separation between the sequence types as well as the country of origin through qPCR, with the observed amplification patterns matching the expected outcomes.. Additionally, in a blind test conducted by mixing samples of S. subcrenata at random, Insertion 1 showed 74% accuracy, 52% sensitivity, and 96% specificity, and SNP 21 showed 86% accuracy, 79% sensitivity, and 93% specificity. Therefore, the two SNP markers developed are expected to be useful in verifying the authenticity of the country of origin of S. subcrenata when used independently or in combination.