• Title/Summary/Keyword: PCR marker

Search Result 787, Processing Time 0.03 seconds

Identification of chromosomal translocation causing inactivation of the gene encoding anthocyanidin synthase in white pomegranate (Punica granatum L.) and development of a molecular marker for genotypic selection of fruit colors

  • Jeong, Hyeon-ju;Park, Moon-Young;Kim, Sunggil
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • Previous studies have not detected transcripts of the gene encoding anthocyanidin synthase (ANS) in white pomegranates (Punica granatum L.) and suggest that a large-sized insertion in the coding region of the ANS gene might be the causal mutation. To elucidate the identity of the putative insertion, 3887-bp 5' and 3392-bp 3' partial sequences of the insertion site were obtained by genome walking and a gene coding for an expansin-like protein was identified in these genome-walked sequences. An identical protein (GenBank accession OWM71963) isolated from pomegranate was identified from BLAST search. Based on information of OWM71963, a 5.8-Mb scaffold sequence with genes coding for the expansin-like protein and ANS were identified. The scaffold sequence assembled from a red pomegranate cultivar also contained all genome-walked sequences. Analysis of positions and orientations of these genes and genome-walked sequences revealed that the 27,786-bp region, including the 88-bp 5' partial sequences of the ANS gene, might be translocated into an approximately 22-kb upstream region in an inverted orientation. Borders of the translocated region were confirmed by PCR amplification and sequencing. Based on the translocation mutation, a simple PCR codominant marker was developed for efficient genotyping of the ANS gene. This molecular marker could serve as a useful tool for selecting desirable plants at young seedling stages in pomegranate breeding programs.

Relationship between erb-B2 mRNA Expression in Blood and Tissue of Invasive Ductal Carcinoma Breast Cancer Patients and Clinicopathological Characteristics of the Tumors

  • Moazzezy, Neda;Ebrahimi, Fatemeh;Sisakht, Mahsa Mollapour;Yahyazadeh, Hossein;Bouzari, Saeid;Oloomi, Mana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.249-254
    • /
    • 2016
  • Molecular detection methods such as RT-PCR for detecting breast cancer-associated gene expression in the peripheral blood have the potential to modify breast cancer (BC) staging and therapy. In this regard, we evaluated the potential of erb-B2 molecular marker in BC detection and analyzed the expression of erb-B2 mRNA in the peripheral blood and fresh tissue samples of 50 pretreated female BC patients and 50 healthy females by reverse transcription-PCR (RT-PCR) method. We also assessed the correlation of erb-B2 mRNA marker positivity in peripheral blood and tumor tissue samples with clinical and pathological factors in BC patients in order to evaluate its prognostic value. It was shown that there is a significant difference between healthy females and BC patients with expression of the erb-B2 molecular marker (p<0.01). A significant difference between the expression of erb-B2 in the peripheral blood and tissue samples of BC patients (p<0.01) and the frequency of circulating erb-B2 mRNA expression in peripheral blood and in tissue was detected by RT-PCR. No correlation was found between erb-B2 mRNA expression in blood or tumor tissue samples and lymph node, tumor grade, tumor stage, tumor size, patient's age, ki67, estrogen receptor (ER), progesterone receptor (PGR), P53, and HER-2 status. However, in a small subset of 31 BC patients we found that expression of erb-B2 in peripheral blood or in both peripheral blood and tumor tissue was directly correlated with lympho-vascular invasion and perineural invasion as poor prognostic features. The highest rates of erb-B2 expression in peripheral blood or tumor tissue were in the ER and PR negative and HER-2 positive group. This study suggests that the application of the RT-PCR and immunohistochemical methods for erb-B2 molecular marker detection would provide a higher detection rate, especially in early stage BC.

Efficacy of Duplex-nested PCR and Fluorescent PCR in the Preimplantation Genetic Diagnosis for Duchenne Muscular Dystrophy (근이영양증에 대한 착상전 유전진단에서 Duplex-nested PCR과 Fluorescent PCR 방법의 효용성)

  • Lee, Hyoung-Song;Choi, Hye Won;Lim, Chun Kyu;Park, So Yeon;Kim, Jin Young;Koong, Mi Kyoung;Jun, Jin Hyun;Kang, Inn Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • Objective: Preimplantation genetic diagnosis (PGD) is reserved for couples with a risk of transmitting a serious and incurable disease, and hence avoids the undesirable therapeutic abortion. In this study, we evaluated the efficacy of PGD for Duchenne muscular dystrophy (DMD) cases by the fluorescent PCR with polymorphic linked markers and the conventional duplex-nested PCR methods. Methods: Biopsy of one or two blastomeres was done from the embryos fertilized by ICSI on the third day after fertilization. We performed two cases of PGD-DMD by the duplex-nested PCR for the causative mutation loci and the SRY gene on Y chromosome. The triplex fluorescent PCR for the mutation loci, the SRY gene and the polymorphic microsatellite marker on X chromosome was applied for two cases of PGD-DMD. Results: By the duplex-nested PCR, successful diagnosis rate was 95.5% (21/22), but we could not discriminate the female embryos whether normal or carrier in this X-linked recessive disease. However, the triplex fluorescent PCR method showed 100% (27/27) of successful diagnosis rate, and all female embryos (n=17) were distinguished normal (n=10) from carrier (n=7) embryos. Unaffected and normal embryos were transferred into mother's uterus after diagnosis. A healthy normal male was achieved after PGD with the duplex-nested PCR method and a twin, a male and a female, were delivered with triplex fluorescent PCR method. The normality of dystrophin gene was confirmed by amniocentesis and postnatal genetic analysis in all offsprings. Conclusion: The fluorescent PCR with polymorphic marker might be useful in improving the specificity and reliability of PGD for single gene disorders.

High-Throughput DNA Extraction Method for Marker Analysis in Rice Grain (대량의 쌀 시료 분석을 위한 DNA 추출법)

  • Choi, Young-Deok;Lee, Hae-Kwang;Lee, Yun-Suk;Yun, Jeong-Hee;Kim, Su-Jeong;Park, Seong-Whan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.269-273
    • /
    • 2006
  • The study of molecular markers to improve crops largely depends on the availability of rapid and of efficient DNA extraction methods. Here we developed a cheap and convenient method to isolate genomic DNA from rice grains suitable for large-scale microsatellite analysis. We confirmed that the isolated rice DNA is suitable for PCR analysis with STS marker and SNP marker, as well as microsatellite marker. Further, we established high-throughput DNA extraction system in a 96-well plate format which make it possible high-throughput analysis of microsatellite markers with rice grains. This implies that the new method could be a useful tool for other types of marker analysis in large scale.

분자유전학적인 기술을 이용한 육 감별법

  • Kim, Tae-Heon
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2000.11a
    • /
    • pp.59-75
    • /
    • 2000
  • This study was carried out to develop a DNA marker for identifying between Korean cattle (Hanwoo) and other breeds. First experiment was performed to isolate Hanwoo specific DNA marker at sequence characterized amplified regions (SCARs). Five breeds of cattle including Hanwoo, Holstein, Hereford, Angus and Charolais were represented with the from 8 to 20 individuals. Fourteen primers of 300 arbitrary primers of 10 nucleotides showed reproducible polymorphism across the breeds. An amplified band of 0.9 kb in the primer MG-3 showed the specificity to Holstein breed. And MG-6 and MG-12 detected the Hereford and Hanwoo specific markers at the size of 2.0 kb and 1.0 kb, respectively. A 1.0 kb band of MG-12 was cloned and sequenced. A SCAR primer was designed based on the obtained sequences. It was possible to identify the Hanwoo from Holstein breed. Second experiment was carried out to observe the genotype frequencies of MC1R in 1,044 samples of imported beef and eight different cattle breeds including Hanwoo, Holstein, Angus, Brown-Swiss, Charolais, Limousin, Simmental and Hereford. The primers for the amplification of bovine MC1R gene were designed based on a bovine MC1R gene sequence (GenBank accession no.Y19103). A size of 350 bp was amplified by polymerase chain reaction(PCR), digested with two different restriction enzyme, BsrFI and MspA II, and electrophoresed in 2.5% Metaphore agarose gel for determination of genotypes. Genotype frequencies of Hanwoo were 0.10 in E+e and 0.90 in ee. Allele ED was shown in all of Holstein and Angus breeds tested which have black coat color phenotypes. We suggested that SCAR marker and the bovine MC1R gene could be used as a DNA marker for distinguishing beef between Hanwoo and Holstein.

  • PDF

Characterization of MHC DRB3.2 Alleles of Crossbred Cattle by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism

  • Paswan, Chandan;Bhushan, Bharat;Patra, B.N.;Kumar, Pushpendra;Sharma, Arjava;Dandapat, S.;Tomar, A.K.S.;Dutt, Triveni
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1226-1230
    • /
    • 2005
  • The present investigation was undertaken to study the genetic polymorphism of the DRB3 exon 2 in 75 crossbred cattle by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Five genotypes i.e. HaeIII-a, HaeIII-b, HaeIII-e, HaeIII-ab and HaeIII-ae were observed when the 284 bp PCR products were digested with HaeIII restriction enzyme. The corresponding frequencies of these patterns were 0.53, 0.04, 0.01, 0.38 and 0.04, respectively. Digestion with RsaI restriction enzyme resolved 24 different restriction patterns. The frequencies of these patterns ranged from 0.013 (RsaI-f, RsaI-k and RsaI-c/n) to 0.120 (RsaI-n). The results revealed that the crossbred cows belonged to the RsaI patterns namely b, k, l, a/l, d/s, l/n, l/o and m/n, whose corresponding frequencies were 0.027, 0.013, 0.040, 0.027, 0.040, 0.067, 0.027 and 0.067, respectively. Digestion of the 284 bp PCR product of DRB3.2 gene with PstI in the crossbred cattle did not reveal any restriction site. These results suggested the absence of the recognition site in some of the animals. These results also revealed that the crossbred cows studied were in homozygous as well as heterozygous condition. On the basis of the above results it can be concluded that the DRB3.2 gene was found to be highly polymorphic in the crossbred cattle population.

A Molecular Marker Discriminating the Soybean Podworm, Matsumuraeses phaseoli and the Podborer, M. falcana (Lepidoptera: Tortricidae) (팥나방(Matsumuraeses phaseoli)과 어리팥나방(M. falcana)의 판별 분자마커)

  • Heo, Hye-Jung;Son, Ye-Rim;Seo, Bo-Yoon;Jung, Jin-Kyo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.48 no.4
    • /
    • pp.547-551
    • /
    • 2009
  • Two closely related species, the soybean podworm, Matsumuraeses phaseoli, and the podborer, M. falcana, gives differential economic damages on crops. It is difficult to discriminate these potential sympatric species by morphological characters. The goal of this study was to develop a discriminating molecular marker based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A partial genomic fragment (500 bp) of mitochondrial cytochrome oxidase I (mtCOI) was sequenced in both species, in which restriction site by Rsa I was selected as a dichotomous marker. PCR-RFLP in the mtCOI region clearly discriminated both species.

Multiple Genetic Marker Analysis with Using Quantitative RT-PCR in Gastric Cancer (위암에서 정량적 역전사 중합효소연쇄반응을 이용한 다중 표지자 분석)

  • Yoo, Moon-Won;Lee, Hyuk-Joon;Choi, Soo-Min;Yu, Ji-Eun;Hur, Keun;Kim, Young-Kook;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.7 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Purpose: This study was aimed at evaluating the diagnostic validity of peritoneal dissemination of gastric cancer cells by performing multiple genetic marker analysis via quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in gastric cancer cell lines and gastric cancer tissues. Materials and Methods: Quantitative RT-PCR was performed on 12 human gastric cancer cell lines and 10 gastric cancer tissues with four mRNAs of carcinoembryonic antigen (CEA), Cytokeratin 20 (CK20), dopa decarboxylase (DDC), and L-3-phosphoserine phosphatase (L3PP). Results: Out of the 12 human gastric cancer cell lines we tested, CEA was overexpressed in four cell lines (33%), CK20 in one (8%), DDC in six (50%) and L3PP was expessed in all the lines (100%). Out of the 10 gastric cancer tissues we tested, CEA was overexpressed in nine tissues, CK20 in eight, DOC in nine and L3PP was overexpressed in all the tissues. L3PP was overexpressed in all the gastric cancer cell lines and tissues, but the levels of overexpression were lower than those of CEA and DDC. Conclusion: Multiple genetic marker analysis can compensate for the weak points of single marker analysis when testing gastric cancer, and three mRNAs of CEA, DDC and L3PP can be used as candidate genes.

  • PDF

Optimum Condition of Polymerase Chain Reaction Techniques for Randomly Amplified Polymorphic DNA of Strawberry (딸기의 RAPD를 위한 PCR의 최적조건)

  • 양덕춘;최성민;강태진;이미애;송남현;민병훈
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • This study was performed to select marker which can identify genetic variation between mother plant and in vitro cultured plantlets of strawberry by PCR using random primer. When 'Yeobong' DNA extracted was treated with proteinase-K and RNase-H, clear DNA bands were shown. The optimal condition for RAPD in strawberry was to use 50ng of template DNA, 10pmol of primer,37oC of annealing temperature, and 45 cycles of PCR. After establishing above PCR optimal condition, RAPD pattern was investigated by using UBC primers. PCR was performed, and 46 of 90 primers produced PCR product showing 158 total bands. GC content was compared between the primers forming bands and no bands. The GC content showing bands was average 67.4%, whereas primers showing no bands 58%.

  • PDF

Paternity Diagnosis using The Multiplex PCR with Microsatellite Markers in Dogs

  • Kim, Seung-Chang;Jang, Hong-Chul;Kim, Lee-Kyung;Lim, Da-Jeong;Lee, Seung-Hwan;Cho, Yong-Min;Kim, Tae-Hun;Seong, Hwan-Hoo;Oh, Sung-Jong;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.399-405
    • /
    • 2011
  • The number of abandoned dogs is increasing with the worsening of the economy and the rising of feed value. It was becoming a serious social problem because of the disease transmission and destruction of natural ecosystems by abandoned dogs been wild animal. In order to solve these problems, companion dogs necessary to secure its own genetic information and to establish the systematic tracking system. Using multiplex-PCR method with 27 microsatellite marker (MS marker) divided 3 set, various alleles occurring to 6 dog breed (Labrador Retriever, German Shepherd, English Springer Spaniel, Belgian Malinois, Jindo Dog, PoongSan Dog) make use of markers to determine allele frequency and heterozygosity. MS marker FH2834 and FH2790 have only two allele and most were found in 13 alleles at FH3381 and FH3399. Average heterozygosity of MS marker is 0.534 and especially, heterozygosity represented the highest value of 0.765 at FH3381. So, it was recognized appropriate allele frequency for individual identification and paternity diagnosis in companion dogs. Using multiplex-PCR method with MS marker, various alleles occurring to dog breed make use of markers to deter mine individual identification and paternity diagnosis, traits associated biomarkers and breed-specific marker for faster, more accurate and ways to reduce the analysis cost. Based on this result, a scientific basis was established to the existing pedigree data by applying genetics additionally. Animal registration system is expected to be conducted nationwide in future. The method expects to very useful this system.