• Title/Summary/Keyword: PCR amplification rate

Search Result 67, Processing Time 0.029 seconds

Application of Hot Start PCR Method in PCR-based Preimplantation Genetic Diagnosis

  • Kim, Sung-Ah;Kang, Moon-Joo;Kim, Hee-Sun;Oh, Sun-Kyung;Ku, Seung-Yup;Choi, Young-Min;Jun, Jong-Kwan;Moon, Shin-Yong
    • Journal of Genetic Medicine
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Purpose: To determine a method to improve the efficacy and accuracy of preimplantation genetic diagnosis (PGD) - polymerase chain reaction (PCR), we compared hot start PCR and conventional multiplex nested PCR. Materials and Methods: This study was performed with single lymphocyte isolated from whole blood samples that were obtained from two couples with osteogenesis imperfecta (OI). We proceeded with conventional multiplex nested PCR and hot start PCR in which essential reaction components were physically removed, and we compared the amplification rate, allele dropout rate and nonspecific products. Afterward, we used selective method for PGD. Results: In the two couples, the respective amplification rate were 93.5% and 80.0% using conventional multiplex nested PCR and 95.5% and 92.0% using hot start PCR. The respective mean allele dropout rates for the two couples were 42.0% and 14.0% with conventional multiplex nested PCR and 36.0% and 6.0% with hot start PCR. Conclusion: The results demonstrate that the hot start PCR procedure provides higher amplification rates and lower allele dropout rate than the conventional method and that it decreased the nonspecific band in multiplex nested PCR. The hot start method is more efficient for analyzing a single blastomere in clinical PGD.

Optimized Methods of Preimplantation Genetic Diagnosis for Trinucleotide Repeat Diseases of Huntington's Disease, Spinocerebellar Ataxia 3 and Fragile X Syndrome (삼핵산 반복서열 질환인 헌팅톤병, 척수소뇌성 운동실조증, X-염색체 취약 증후군의 착상전 유전진단 방법에 대한 연구)

  • Kim, Min-Jee;Lee, Hyoung-Song;Lim, Chun-Kyu;Cho, Jae-Won;Kim, Jin-Young;Koong, Mi-Kyoung;Son, In-Ok;Kang, Inn-Soo;Jun, Jin-Hyon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • Objectives: Many neurological diseases are known to be caused by expansion of trinucleotide repeats (TNRs). It is hard to diagnose the alteration of TNRs with single cell level for preimplantation genetic diagnosis (PGD). In this study, we describe methods optimized for PGD of TNRs related diseases such as Huntington's disease (HD), spinocerebellar ataxia 3 (SCA3) and fragile X syndrome (FXS). Methods: We performed the preclinical assays with heterozygous patient's lymphocytes by single cell PCR strategy. Fluorescent semi-nested PCR and fragment analysis using automatic genetic analyzer were applied for HD and SCA 3. Whole genome amplification with multiple displacement amplification (MDA) method and fluorescent PCR were carried out for FXS. Amplification and allele drop-out (ADO) rate were evaluated in each case. Results: The fluorescent semi-nested PCR of single lymphocyte showed 100.0% of amplification and 14.0% of ADO rate in HD, and 94.7% of amplification and 5.6% of ADO rate in SCA3, respectively. We could not detect the PCR product of CGG repeats in FXS using the fluorescent semi-nested PCR alone. After applying the MDA method in FXS, 84.2% of amplification and 31.3% of ADO rate were achieved. Conclusions: Fluorescent semi-nested PCR is a reliable method for PGD of HD and SCA3. The advanced MDA method overcomes the problem of amplification failure in CGG repeats of FXS case. Optimization of methods for single cell analysis could improve the sensitivity and reliability of PGD for complicated single gene disorders of TNRs.

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • Ju, Min-Yeong;Baek, Seung-Hun;Kim, Eun-Ju;Nguyen, Nguyen Le Thao;Park, Chan-Yeong;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Sensitivity study of the Yfiler® PLUS PCR Amplification Kit in forensic casework samples (법과학 현장시료에서 Yfiler® PLUS PCR Amplification Kit의 민감도 연구)

  • Jung, Ju Yeon;Kim, Kyoung Sook;Park, Sun Wha;Lim, Si Keun;Lee, Dong Sub;Lee, Yang Han
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • A variety of Y-STR analysis kits have been developed and used in the forensic field. Prior to the forensic application of a new kit, laboratory validation and sensitivity tests are essential processes in selecting suitable alternatives and for assuring that standard operating procedures are followed. In this paper, we have performed a sensitivity study of a new commercial kit, the Yfiler® PLUS PCR Amplification Kit (Yfiler plus kit, released in 2014) by comparing it with the AmpF/STR® YfilerTM PCR Amplification Kit (Yfiler kit, released in 2004). The Yfiler plus kit includes the 17 Y-STR loci of the Yfiler kit and has been supplemented with 10 new Y-STR loci. First, we analyzed the sensitivity difference between the two kits using commercial control DNA 2800M and 007. In addition, we compared the detection rate between the two kits from the 16 selected forensic casework samples of less than 0.5 ng concentrations. The results show that the sensitivity and detection rate of the Yfiler plus kit are higher than the corresponding rates of the Yfiler kit. In addition, we were able to obtain more Y-STR profiles with the use of the new kit. Thus, we suggest that Yfiler plus kit is a more effective forensic tool to detect Y-STR profiles from forensic casework samples of low concentrations.

The Improvement of Sexing PCR Conditions and Survival Rate of Blastomere Separation Method in the Bovine Embryo (소 수정란의 할구 분리방법에 따른 생존율 및 성판별 PCR의 개선)

  • Kim, Sang-Hwan;Kim, Kyong-Lae;Lee, Ho-Jun;Jung, Kyoung-Sub;Baek, Jun-Seok;Jung, Duk-Won;Kim, Dae-Eun;Lee, Deuk-Hwan;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • The present study was conducted to compare on embryo survival rates by blastomere isolation methods, and establish the optimal PCR procedure for perform the sexing of bovine blastocysts produced by IVF. IVF embryos used in the study was used the Bisected or Sliced methods for blastomere isolation, and the survival rates of blastocyst with rapid way of sexing PCR was assessed. In the present study for survival rates in blastocyst was the total cleavage rate was 75% and a blastocyst development among cleaved embryos was 40%. Survival rate of embryos treated with intact, bisected or sliced method was 100, 63.3 or 81.3%, respectively. Therefore, survival rate of embryos treated with sliced method was higher compared to that of embryos treated with bisected method. The sexing rate of female or male was not significantly different between S4BFBR primer and BSY + BSP primer (1.75 : 1 vs. 1.43 : 1), respectively. Because of the PCR amplification using the S4BFBR primer was simpler method than multiplex PCR amplification method. Furthermore, the accuracy of sexing rate and reduction of PCR work time between 2-step and 3-step of PCR methods was 98.0% / 1.5 hr and 97.0% / 3.5 hr, respectively. Based on these results, it can be suggested that the sliced and PCR methods we developed was very effective method to reduce time consuming and procedure of PCR amplification for sexing with the increase of survival rate on the blastocyst.

A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of 'Candidatus Liberibacter asiaticus' in Citrus

  • Tirumalareddy Danda;Jong-Won Park;Kimberly L. Timmons;Mamoudou Setamou;Eliezer S. Louzada;Madhurababu Kunta
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.309-318
    • /
    • 2023
  • Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, 'Candidatus Liberibacter asiaticus' (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, Diaphorina citri Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy nrdB gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the nrdB target as low as ~2.6 Log10 copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

DNA Yield and PCR Success Rate of the Establishment Time of Wood Annual Ring: A Case Study of Korean Red Pine (Pinus densiflora) (목재의 나이테 생성 시기에 따른 DNA 추출 수율 및 PCR 성공률: 소나무(Pinus densiflora) 목재의 사례)

  • So Hyeon Kim;Byeong-Ju Lee;Ji Young Ahn;Jei-Wan Lee;Hyun-Mi Lee;Soo Hyung Eo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.554-560
    • /
    • 2023
  • To prevent illegal timber distribution, DNA markers have been used to identify the species and origin. However, extracting high-quality DNA from timber is difficult because of its physical and chemical properties. In this study, we investigated whether the age of timber tissue influences the yield of DNA extraction and the success rate of polymerase chain reaction (PCR) to understand the relationship between the establishment time of the wood annual ring and the extracted DNA concentration (ng/μl), purity (A260/A280), and PCR success rate (%) from pinewood, a major Korean domestic species. According to the results, it was observed that as the distance from the cambium increased, indicating that the tissue was older, the concentration and purity of the extracted DNA decreased significantly. For the trnM-trnV (285 bp) and rpoC1 (298 bp) regions, the PCR success rate was 100%. However, for the rbcL (1.3 kb) region, the PCR success rate was 66.67%. Moreover, PCR amplification of the rbcL region failed at all points older than 30 years. Thus, it is deduced that as time passes, along with the decay of timber cells, DNA is degraded, leading to a decrease in DNA concentration, purity, and PCR success rate. The results of this study are expected to be beneficial for future applications, such as the species identification of timber, providing valuable insights and potential utilization in this field.

Application study of PCR additives to improve the split peaks in direct PCR

  • Kim, Joo-Young;Kim, Da-Hye;Park, Hyun-Chul;Jung, Ju Yeon;Jin, Gang-Nam;Hwang, In-Kwan;Kang, Pil-Won
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.155-162
    • /
    • 2019
  • Analysis techniques using DNA profiling are widely used in various fields including forensic science and new technologies such as the Direct PCR amplification method are being developed continuously in order to acquire the DNA profiles efficiently. However, it has a limits such as non-specific amplification according to the quality of crime scene evidence samples. Especially, split peaks caused by excessive DNA samples are one of the important factors that could cause the debate to allow researchers to interpret the DNA profile results. In this study, we confirmed the occurrence rate of split peaks in each STR (short tandem repeats) locus of the $GlobalFiler^{TM}$ kit and investigated the possibility of improving the split peaks using several PCR additives such as DMSO (dimethylsulfoxide), $MgCl_2$, Betaine and Tween-20. As a result, we could make three groups according to the occurrence rate of split peaks in Direct PCR and it was confirmed that the ratio of split peaks could be reduced by DMSO (87.4 %), $MgCl_2$ (84.5 %) and Betaine (86.1 %), respectively. These results indicate that PCR additives such as DMSO, $MgCl_2$ and Betaine can be improve the split peaks in Direct PCR and thereby facilitate subsequently a successful DNA profile results.

Quantification of Her-2/Neu Gene in Breast Cancer Patients using Real Time-Polymerase Chain Reaction (Q-PCR) and Correlation with Immunohistochemistry Findings

  • Abdul Murad, Nor Azian;Razak, Zuraini Abdul;Hussain, Rosniza Muhammmad;Syed Hussain, Sharifah Noor Akmal;Ching Huat, Clarence Ko;Siti Aishah, Che Md. Ali;Abdullah, Norlia;Muhammad, Rohaizak;Ibrahim, Naqiyah;Jamal, Rahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1655-1659
    • /
    • 2013
  • Background: HER-2/neu is a proto-oncogene that encodes a transmembrane tyrosine kinase growth factor which is crucial for stimulating growth and cellular motility. Overexpression of HER-2/neu is observed in 10-35% of human breast cancers and is associated with pathogenesis, prognosis as well as response to therapy. Given the imperative role of HER-2/neu overexpression in breast cancer, it is important to determine the magnitude of amplification which may facilitate a better prognosis as well as personalized therapy in affected patients. In this study, we determined HER-2/neu protein expression by immunohistochemistry (IHC) concurrently with HER-2/neu DNA amplification by quantitative real time-polymerase chain reaction (Q-PCR). Materials and Methods: A total of 53 paired tissue samples from breast cancer patients were frozen-sectioned to characterize the tumour and normal tissues. Only tissues with 80% tumour cells were used in this study. For confirmation, Q-PCR was used to determine the HER-2/neu DNA amplification. Results: We found 20/53 (37.7%) of the tumour tissues to be positive for HER-2/neu protein overexpression using IHC. Out of these twenty, only 9/53 (17%) cases were in agreement with the Q-PCR results. The concordance rate between IHC and Q-PCR was 79.3%. Approximately 20.7% of positive IHC cases showed no HER-2/neu gene amplification using Q-PCR. Conclusion: In conclusion, IHC can be used as an initial screening method for detection of the HER-2/neu protein overexpression. Techniques such as Q-PCR should be employed to verify the IHC results for uncertain cases as well as determination of HER-2/neu gene amplification.

Clinical Significance of Expression and Amplification of the DcR3 Gene in Pancreatic Carcinomas

  • Zhou, Jian;Song, Shi-Duo;Li, De-Chun;Zhou, Jin;Zhu, Dong-Ming;Zheng, Shi-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.719-724
    • /
    • 2012
  • This study aimed to investigate the clinical significance of expression and amplification of decoy receptor 3 (DcR3) in pancreatic carcinomas (PC). mRNA expression was detected by PQ-PCR, and amplification was determined. DcR3 protein expression was detected by immunohistochemistry and ELISA. Correlations between DcR3 expression and clinical pathological factors were analyzed. The relative amount of DcR3 in PC tissues and non-cancerous tissues showed a statistically significant difference, 21 cases displaying more than two fold DcR3 amplification, while no such amplification was found in normal pancreatic tissues. DcR3 positive cell staining was located in the cytoplasm. The positive rate of DcR3 in PC and non-cancerous tissues showed a significant difference. DcR3 mRNA expression was correlated with clinical staging, size of the tumor, lymph node metastasis and histological staging, while protein expression was correlated with clinical data like tumor size. DcR3 gene amplification only correlated with tumor size. The level of DcR3 in serum of the PC resectable group before operation was $72.2{\pm}10.2$ pg/ml, showing a significant difference compared to gallbladder carcinoma group (GC) or pancreatic benign tumor (PBT) group (P < 0.01). In conclusion, DcR3 amplification is correlated with DcR3 expression in PC tissues, especially those clinical pathological factors which reflect tumor progression. Assessment of DcR3 level in sera of PC patients may be helpful for the early diagnosis and prognostic judgement.