Browse > Article
http://dx.doi.org/10.5806/AST.2019.32.4.155

Application study of PCR additives to improve the split peaks in direct PCR  

Kim, Joo-Young (Forensic DNA Division, National Forensic Service)
Kim, Da-Hye (Forensic DNA Division, National Forensic Service)
Park, Hyun-Chul (Forensic DNA Division, National Forensic Service)
Jung, Ju Yeon (Forensic DNA Division, National Forensic Service)
Jin, Gang-Nam (Forensic DNA Division, National Forensic Service)
Hwang, In-Kwan (Forensic DNA Division, National Forensic Service)
Kang, Pil-Won (Forensic DNA Division, National Forensic Service)
Publication Information
Analytical Science and Technology / v.32, no.4, 2019 , pp. 155-162 More about this Journal
Abstract
Analysis techniques using DNA profiling are widely used in various fields including forensic science and new technologies such as the Direct PCR amplification method are being developed continuously in order to acquire the DNA profiles efficiently. However, it has a limits such as non-specific amplification according to the quality of crime scene evidence samples. Especially, split peaks caused by excessive DNA samples are one of the important factors that could cause the debate to allow researchers to interpret the DNA profile results. In this study, we confirmed the occurrence rate of split peaks in each STR (short tandem repeats) locus of the $GlobalFiler^{TM}$ kit and investigated the possibility of improving the split peaks using several PCR additives such as DMSO (dimethylsulfoxide), $MgCl_2$, Betaine and Tween-20. As a result, we could make three groups according to the occurrence rate of split peaks in Direct PCR and it was confirmed that the ratio of split peaks could be reduced by DMSO (87.4 %), $MgCl_2$ (84.5 %) and Betaine (86.1 %), respectively. These results indicate that PCR additives such as DMSO, $MgCl_2$ and Betaine can be improve the split peaks in Direct PCR and thereby facilitate subsequently a successful DNA profile results.
Keywords
Direct PCR; PCR additive; split peaks; DNA profile; STR genotyping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. C. Lorenz, J. Vis. Exp., 22(63), e3998 (2012).
2 P. Gill, J. Whitaker, C. Flaxman, N. Brown, and J. Buckleton, Forensic Sci. Int., 112(1), 17-40 (2000).   DOI
3 P. Gill, Croat. Med. J., 42(3), 229-232 (2001).
4 I. Findlay, A. Taylor, P. Quirke, R. Frazier, and A. Urquhart, Nature, 389(6651), 555-556 (1997).   DOI
5 S. E. Cavanaugh and A. S. Bathrick, Foresic Sci. Int. Genet., 32, 40-49 (2018).   DOI
6 J. Templeton, R. Ottens, V. Paradiso, O. Handt, D. Taylor, and A. Linacre, Forensic Sci. Int. Genet. Suppl. Ser., 4, e224-e225 (2013).   DOI
7 A. Ambers, R. Wiley, N. Novroski, and B. Budowle, Forensic Sci. Int. Genet., 32, 80-87 (2018).   DOI
8 C. Gomes, J. Martinez-Gomez, L. Diez-Juarez, S. Diaz-Sanchez, S. Palomo-Diez, E. Arroyo-Pardo, M. Cano-Lopez, and J. Fernandez-Serrano, Forensic Sci. Int. Genet. Suppl. Ser., 6, e265-e266 (2017).   DOI
9 A. Aufauvre-Brown, C. M. Tang, and D. W. Holden, Curr. Genet., 24, 177-178 (1993).   DOI
10 Y. C. Swaran and L. Welch, Forensic Sci. Int. Genet., 6, 407-412 (2012).   DOI
11 B. A. Myers, J. L. King, and B. Budowle, Forensic Sci. Int. Genet., 6(5), 640-645 (2012).   DOI
12 S. Flores, J. Sun, J. King, and B. Budowle, Forensic Sci. Int. Genet., 10, 33-39 (2014).   DOI
13 D. Y. Wang, S. Gopinath, R. E. Lagace, W. Norona, L. K. Hennessy, M. L. Short, and J. J. Mulero, Forensic Sci. Int. Genet., 19, 148-155 (2015).   DOI
14 J. E. L. Templeton, D. Taylor, O. Handt, and A. Linacre, Forensic Sci. Int. Genet., 29, 276-282 (2017).   DOI
15 M. D. Timken, S. B. Klein, and M. R. Buoncristiani, Forensic Sci. Int. Genet., 11, 195-204 (2014).   DOI
16 R. Chakrabarti and C. E. Schutt, Nucleic Acids Res., 29(11), 2377-2381 (2001).   DOI
17 R. Chakrabarti and C. E. Schutt, Gene, 274, 293-298 (2001).   DOI
18 M. Musso, R. Bocciardi, S. Parodi, R. Ravazzolo, and I. Ceccherini, J. Mol. Diagn., 8(5), 544-550 (2006).   DOI
19 A. Barbaro, G. Falcone, and A. Barbaro, Prog. Forensic Genet., 8, 523-525 (2000).
20 J. Y. Kim, K. S. Jeong, K. M. Lee, Y. J. Kim, D. H. Choi, and N. S. Cho, J. Sci. Crim. Invest., 9(4), 258-265 (2015).   DOI
21 M. A. Jensen, M. Fukushima, and R. W. Davis, PLoS One, 5(6), e11024 (2010).   DOI
22 R. A. H. van Oorschot, D. G. Phelan, S. Furlong, G. M. Scarfo, N. L. Holding, and M. J. Cummins, Int. Congr. Ser., 1239, 803-807 (2003).   DOI
23 P. N. Hengen, Trends Biochem. Sci., 22(6), 225-226 (1997).   DOI
24 N. Baskaran, R. P. Kandpal, A. K. Bhargava, M. W. Glynn, A. Bale, and S. M. Weissman, Genome Res., 6(7), 633-668 (1996).   DOI
25 S. Frackman, G. Kobs, D. Simpson, and D. Storts, Promega Notes, 65, 27-30 (1998).