• Title/Summary/Keyword: PCR

Search Result 11,793, Processing Time 0.043 seconds

Specific Detection of Root Rot Pathogen, Cylindrocarpon destructans, Using Nested PCR from Ginseng Seedlings (Nested PCR 기법을 이용한 인삼 뿌리썩음병원균의 특이적 검출)

  • Jang, Chang-Soon;Lee, Jung-Ju;Kim, Sun-Ick;Song, Jeong-Young;Yoo, Sung-Joon;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • Cylindrocarpon destructans is a soil-borne plant pathogenic fungus causing root rot on ginseng and trees. Rapid and exact detection of this pathogen was practiced on ginseng seedlings by nested PCR using speciesspecific primer set. The second round of PCR amplification by Dest 1 and Dest 4 primer set formed 400 bp of species-specific fragment of C. destructans from the product of first round of amplification by ITS 1 and ITS 4 primer set. In the PCR sensitivity test based on DNA density, nested PCR detected to the limit of one fg and it meant the nested PCR could detect up to a few spores of C. destructans. Also, nested PCR made it possible to detect the pathogen from ginseng seedlings infected by replantation on artificial infested soil. Our nested PCR results using species-specific primer set could be utilized for diagnosis of root rot disease in ginseng cultivation.

Application of Hot Start PCR Method in PCR-based Preimplantation Genetic Diagnosis

  • Kim, Sung-Ah;Kang, Moon-Joo;Kim, Hee-Sun;Oh, Sun-Kyung;Ku, Seung-Yup;Choi, Young-Min;Jun, Jong-Kwan;Moon, Shin-Yong
    • Journal of Genetic Medicine
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Purpose: To determine a method to improve the efficacy and accuracy of preimplantation genetic diagnosis (PGD) - polymerase chain reaction (PCR), we compared hot start PCR and conventional multiplex nested PCR. Materials and Methods: This study was performed with single lymphocyte isolated from whole blood samples that were obtained from two couples with osteogenesis imperfecta (OI). We proceeded with conventional multiplex nested PCR and hot start PCR in which essential reaction components were physically removed, and we compared the amplification rate, allele dropout rate and nonspecific products. Afterward, we used selective method for PGD. Results: In the two couples, the respective amplification rate were 93.5% and 80.0% using conventional multiplex nested PCR and 95.5% and 92.0% using hot start PCR. The respective mean allele dropout rates for the two couples were 42.0% and 14.0% with conventional multiplex nested PCR and 36.0% and 6.0% with hot start PCR. Conclusion: The results demonstrate that the hot start PCR procedure provides higher amplification rates and lower allele dropout rate than the conventional method and that it decreased the nonspecific band in multiplex nested PCR. The hot start method is more efficient for analyzing a single blastomere in clinical PGD.

Detection of Anthracnose Fungus Colletotrichum circinans by Conventional PCR and Real-time PCR (일반 PCR과 Real-time PCR을 이용한 탄저병균 Colletotrichum circinans 검출)

  • Kim, Jun Young
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.467-477
    • /
    • 2018
  • Colletotrichum circinans, an anthracnose pathogen, causes serious damage to onions worldwide. In this study, specific molecular markers were developed to detect C. circinans accurately and quickly with both conventional and real-time PCR methods. The cirTef-F/cirTef-R and cirTu-F/cirTu-R primer sets, which are specific for C. circinans, were constructed by analyzing $tef-1{\alpha}$ and ${\beta}-tubulin$ genes in the fungus. Using the conventional PCR method, 100 pg and 1 ng of fungal DNA could be detected using the cirTef-F/cirTef-R and cirTu-F/cirTu-R sets, respectively. Using the real-time PCR method, 10 pg and 100 pg of fungal DNA could be detected more sensitively with the cirTef-F/cirTef-R and cirTu-F/cirTu-R sets, respectively. Detection of C. circinans from the artificially infected onion seeds was possible by using both conventional and real-time PCR methods and the developed cirTef-F/cirTef-R primer set. The PCR markers specific for C. circinans developed in this study may enhance the efficiency of fungal pathogen detection in imported vegetables and seeds.

Principle of Emulsion PCR and Its Applications in Biotechnology

  • Chai, Changhoon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.259-266
    • /
    • 2019
  • Emulsion polymerase chain reaction (PCR) is performed on compartmentalized DNA, allowing a large number of PCR reactions to be carried out in parallel. Emulsion PCR has unique advantages in DNA amplification. It can be applied in many molecular biological assays, especially those requiring highly sensitive and specific DNA amplification. This review discusses the principle of emulsion PCR and its applications in biotechnology. Related technologies are also discussed.

Rapid Detection Method of Avian Influenza Subtype H5N1 using Quick Real-Time PCR (Quick Real-time PCR을 이용한 Avian Influenza Virus Subtype H5N1의 신속검출법)

  • Kim, Eul-Hwan;Lee, Dong-Woo;Han, Sang-Hoon;Kwon, Soon-Hwan;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The most rapid Real-time PCR based detection method for Avian influenza A virus (AIV) subtype H5N1 was developed. The target DNA sequence in this study was deduced from H5N1 subtype-specific 387 bp partial gene of hemagglutinin, and was synthesized by using PCR-based gene synthesis on the ground of safety. Real-Time PCR was performed by $GenSpector^{TM}$ using microchip-based, total $1{\mu}l$ of reaction mixture with extremely short time in each steps in PCR. The detection including PCR-amplication and analysis of melting temperature was totally completed within 13 min. The H5N1-specific 189 bp PCR product was correctly amplified until 2.4 molecules of hemagglutinin gene as minimum of templates. This kind of PCR was designated as Quick Real-Time PCR in this study and it could be applied to detect not only AIV H5N1, but also other pathogens using PCR-based detection.

Clone Identification of Cudraria Tricuspidata and Hibiscus Syriacus by Using PCR and Southern Hybridization (PCR과 Southern hybridization을 이용한 구지뽕나무와 무궁화의 클론감별)

  • Ryu, Jang-Bal;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.42-46
    • /
    • 1998
  • Polymerase chain reaction (PCR) and Southern hybridization analyses were carried out to identify clones of silk worm thorn (Cudraria tricuspidata) and Rose of sharon (Hibiscus syriacus) which look like one tree with two ar three, branches or two or three different trees. For PCR five different PCR primers $(17{\sim}24\;nucleotides)$ are derived from CaMV 35S promoter, nopaline synthase terminator and coding region of thylakoid membrane protein gene. In the case of silk worm thorn, about 500 bp of PCR product was produced from DNAs of one tree or branch in the presence of 35S primer alone. Southern hybridization analysis of genomic DNAs hybridized with $^{32}P$ labeled PCR product showed that the same size of DNA fragments were hybridized with different intensities. In addition, PCR analyses using 20 different primers of OPERON 10-mer kits showed that only OPA01 primer produced PCR products of different size. These results indicate that two different trees of silk worm thorn combined to one tree. In the case of the Rose of Sharon, the same size of PCR products were produced from three different samples but Southern hybridization with the above PCR product as a probe did not show any hybridized bands. PCR analyses in the presence of OPERON 10-mers showed OPA04 and OPA13 produced different products including same sizes of products. These, results indicate that three different trees of the Rose of Sharon seem to be derived from the tree.

  • PDF

Detection of Hepatitis B Virus Using Micro-PCR and Real-Time PCR Methods (Micro-PCR과 Real-Time PCR을 이용한 B형 간염 바이러스 검출)

  • Kang, Won;Park, Sang-Bum;Nam, Youn-Hyoung;An, Young-Chang;Lee, Sang-Hyun;Jang, Won-Cheoul;Park, Su-Min;Kim, Jong-Wan;Chong, Song-Chun
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • Hepatitis B is a serious public health problem leading to chronic infection and liver cancer. Quantitation of circulating hepatitis B virus (HBV) is important for monitoring disease progression and for assessing the response to antiviral therapy. In this study, by using Real-Time PCR and novel Micro-PCR assay method, we measured HBV concentration in the clinical sample. A total of 120 serum samples from patients with HBV infection collected was in Dankook university hospital to compare the detection limit, sensitivity, specificity and reproducibility of the two assay methods. These findings of this study suggest that Micro-PCR and Real-Time PCR assay methods are comparable to each other in there detection limit, sensitivity, and reproducibility for HBV DNA quantitation. However, Micro-PCR assay is more efficient than Real-Time PCR method, because Real-Time PCR is not so time - consuming, technically easy and need to reagent of a small quantity. It will be useful for rapid and reliable clinical diagnosis of HBV in many countries.

Rapid Detection for Shiga Toxin Type 1 (Stxl) by Using Two-Step Ultra-Rapid Real-Time (URRT) PCR (초고속 이단계 PCR에 의한 Shiga 독소 타입 1의 신속 검출법)

  • Kim, Il-Wook;Kang, Min-Hee;Kwon, Soon-Hwan;Cho, Seung-Hak;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.203-211
    • /
    • 2008
  • Rapid detection-method for Shiga toxin type 1 that was produced from Shiga toxin-producing Escherichia coli (STEC) was developed by two-step ultra-rapid real-time (URRT) PCR. The specific primers were deduced from 80 bp stable region of stx type 1 (stxl) gene among various informations of STEC strains. URRT PCR is a microchip-based real-time PCR using 6 ${\mu}l$ of reaction volume with extremely short denaturation step and annealing/extension step (1 sec, 3 sec, respectively) in each cycle of PCR. Using the stx1-specific URRT PCR, 35 cycled PCR were finished in time of 6 min and 38 see, also measured 7 min and 28 see including melting temperature (Tm) analysis. The detection-limit of stxl-specific URRT-PCR was estimated until 3 colony forming units / PCR with products with stable Tm at $81.42{\pm}0.34^{\circ}C$. In the applications to various STEC strains and contaminated genomic DNAs, stx1-specific URRT-PCR were tested and shown that it would be expected an useful method for the rapid detection of stx1-coded STEC strains.

Identification of Mycobacterium tuberculosis in Pleural Effusion by Polymerase Chain Reaction(PCR) (흉막 삼출액에서 중합효소 연쇄반응(PCR)을 이용한 M. tuberculosis의 검출)

  • Kim, Sun-Taec;Gang, Chang Woon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.695-702
    • /
    • 1995
  • Background: Since polymerase chain reaction(PCR) was devised by Saiki in 1985, it has been used extensively in various fields of molecular biology. Clinically, PCR is especially useful in situation when microbiological or serological diagnosis is limited by scanty amount of causative agents. Thus, PCR can provide rapid and sensitive way of detecting M. tuberculosis in tuberculosis pleurisy which is diagnosed in only about 60 % of cases by conventional method. Method: To evaluate the diagnostic usefulness of PCR in tuberculosis pleurisy, The results of PCR was compared with those of conventional method, including pleural biopsy. The pleural effusion fluid was collected from 7 proven patients, 7 clinically suspected patients and control group(7 patients with malignant effusion). We extracted DNA from pleural fluid by modified method of Eisennach method(1991). The amplification target for PCR was 123 base pair DNA, a part of IS6110. Result: 1) Sensitivity of PCR: We detected upto 50fg DNA. 2) In patients with pleural effusion of proven tuberculosis, the positive rate of PCR was 85.7%(6/7). In patients with pleural effusion of clinically suspected tuberculosis, the positive rate was 71.5%(5/7). In control group, positive rate was 0%(0/7). Conclusion: We concluded that PCR method could be a very rapid, sensitive and specific one for diagnosis of M tuberculosis in pleural effusion. Further studies should be followed for the development of easier method.

  • PDF

Analysis of Molecular Epidemiological Properties of Staphylococcus aureus Isolates from Domestic Animals and Human Patients by PCR (Polymerase Chain Reaction을 활용한 국내 동물과 사람환자에서 분리한 Staphylococcus aureus 분리주의 분자역학적 특성분석)

  • Woo Yong-Ku;Kim Shin
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.24-37
    • /
    • 2005
  • This study was conducted to analyze the molecular epidemiological properties and to select the most efficient and reliable PCR method on 116 of Staphylococcus aureus (S. aureus) isolates from Korean cattle, black goat, pig, dog, chicken, mouse and also human clinical cases from hospital. The distribution patterns of SSG [species specific genes; coagulase (coa), protein A (spa), nuclease (nuc) and aroA (RsaI) gene] were analyzed by PCR method. Among the SSGs, the nuc-gene was found in all strains $(100\%)$ tested and followed by coa-gene $(87.9\%)$, spa-gene $(91.4\%)$ and aroA-gene $(26.7\%)$, in order. The genetic subtyping by RFLP method was performed on the coa [AluI] and aroA-gene [RsaI] PCR products. The mecA-gene PCR and PCR-RFLP techniques were chosen to detect and verify of MRSA strains. Only the human strains $(12.1\%)$ were detected the positive mecA-gene products (533 bp), which were divided into two specific bands [201 & 332 bp] by HhaI enzyme digestion. On coa-gene and spa-gene typing, coa-gene was typed with ten kinds of genotype and coa-3 type were determined as the most predominant genotype, while spa-gene was divided into eleven kinds of genotype and also spa-7 type were selected the most prevalent genotype based on their genetic variations. On the aroA and coa-gene subtyping by PCR-RFLP, aroA-gene products were discriminated with only seven types of genotype, while coa-gene products were further divided into an eleven genotype, respectively. In comparison of SID values of five PCR based typing methods, the coa-PCR-RFLP (SID0.894) was evaluated the most efficient and reliable tools and followed by coa-PCR (SID0.883) and aroA-PCR-RFLP (SID0.462), in order. In conclusion, we could determined that the coa-PCR-RFLP method was the most suitable genetic analysis tool for S. aureus and MRSA strains from domestic animals and humans.