• Title/Summary/Keyword: PC-based manufacturing system

Search Result 74, Processing Time 0.025 seconds

Development of operating software for AS/RS including communication protocol (통신프로토콜을 포함한 자동창고 운용소프트웨어 개발)

  • Son, Kyoung-Joon;Jung, Moo-Young;Lee, Hyun-Yong;Song, Joon-Yeob
    • IE interfaces
    • /
    • v.8 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • Automated Storage and Retrieval System (AS/RS), which is an element of Computer Integrated Manufacturing (CIM), is a widely used material handling equipment with conveyors and Automatic Guided Vehicles (AGVs). Until now the evaluation of operational policies of AS/RS and control algorithms is done theoretically or by computer simulations. In this study, a real-time control and communication software for an AS/RS is developed for actually moving AS/RS miniature. A PC-based real-time operational program can control the AS/RS directly through the communication port. The operational system has additional functions such as storage/retrieval management, inventory management, statistics management, and protocol simulation. The communication protocol simulator of S/R machine can be used for the controller of an S/R machine.

  • PDF

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

Real-time Line Interpolation of a 2.3D Circular Arc based on the Acceleration and Deceleration of a Servo Motor (서보 모터의 가감속을 고려한 2.3차원 원호의 실시간 직선 보간)

  • Lee, Je-Phill;Lee, Cheol-Soo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.399-404
    • /
    • 2001
  • In CNC machining, a 3D(3-dimension) linear segment and a 2D(2-dimension) circular arc are general forms given by CAD/CAM system. Generally, the 2D circular arc machining is processed using dividing into some linear segments. A 3D circular arc also don't exist in the standard form of NC data. This paper present a algorithm and method for real-time machining of a circular arc(not only the 2D one, but also the 3D one). The 3D circular arc machining is based on the 2D circular arc machining. It only needs making a new coordinate system, converting given 3D points(a start point, a end point, and a center point of a 3D circular arc) into points of the new coordinate system, and processing a inverse transformation about a interpolated point. The proposed algorithm was implemented and simulated on PC system. It was confirmed to give a gcod result.

  • PDF

Development of 5-Axis Microscribe System for Off-Line Buffing Robot Path Programming and Its Application (버핑 로봇의 오프라인 경로 프로그래밍용 5축 마이크로스크라이브 개발 및 응용)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • We propose how to program the off-line buffing robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot mechanism. The microscribe system we developed consists of a 5-axis robot link with a turn table, a signal processing unit, PC and an application software program. Itmakes a robot path on the shoes' upper in accordance with the movement of a microscribe with many joints. The developed system calculates the encoder pulse values for the microscribe arm's rotation and transmits the angle pulse values to the PC through a processing unit. Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from microscribe joint one. Problems with the microscribe's kinematics can be solved efficiently and systematically by D-H representation. With the coordinate values calculated by D-H equation, our system can draw a buffing gauge-line on the upper sole. We obtain shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. By applying the system to the buffing robot in a flexible manufacturing system, it can be used effectively to program the path of a real buffing robot.

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

A Study on the Intelligent 3D Foot Scanning System (인공지능형 삼차원 Foot Scanning 시스템에 관한 연구)

  • Kim, Young-Tak;Park, Ju-Won;Tack, Han-Ho;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.871-877
    • /
    • 2004
  • In this paper, for manufacturing a custom-made shoes, shape of foot acquired three-dimensional measurement device which makes shoe-last data for needing a custom-made shoes is founded on artificial intelligence technique and it shows method restoring to the original shape in optimized state. the developed system for this study is based on PC which uses existing three dimensional measurement method. And it gains shoe-last and data of foot shape going through 8 CCD(Charge Coupled Device) Which equipped top and bottom, right and left sides and 4 lasers which also equipped both sides and upper and lower sides. The acquired data are processed image processing algorithm using artificial intelligence technique. And result of data management is better quality of removing noise than other system not using artificial intelligence technique and it can simplify post-processing. So, this paper is constituted hardware and software system and it used neural network for determining threshold value, when input image on pre-processing step is being stage of image binarization and present that results.

A study on the Vision Inspection System for Injection Molding Products (사출제품의 영상검사 시스템 개발에 관한 연구)

  • Shin, Jae-Heung;Kim, Hong-Ryul;Lee, Sang-Cheol;Moon, Sung-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.112-116
    • /
    • 2007
  • If any of the set parameters such as the environment temperature, mold temperature are not maintained at a consistent level, the fail rate of injection molding products is increased. The price of the injection molding machine is very high, so in order to maximize the utilization of the machine that is required the production of a number of different products with minimum fail rate using a single machine. To prevent the defect products by an inspection process with perfect quality is very important to minimizing production of defect products in the molding process. Vision inspection systems are widely utilized in various manufacturing industries for quality assurance purposes. The vision inspection system consists of CCD camera and lighting system to capture the image of the subject of inspection, an image comparison algorithm using to determine the pass/fail of the products, and mechanical devices for the operation of the whole system. This research focuses on the development of the vision inspection system to process the inspection of an automobile parts. We developed a mechanical devices for the inspection of the injection molding products and an image comparison algorithm to determine the pass/fail result of the inspection based on the molding image and the accepted product image.

  • PDF

High speed machining using a NURBS interpolator (NURBS 보간을 이용한 고속 가공)

  • 이동윤;김현철;양민양;최인휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.323-328
    • /
    • 2004
  • Finish machining of a curved surface is often carried out by an NC system with curved interpolation in a high speed machining strategies. This study aims to develop the NURBS interpolator for the PC-NC based machine tools. In the case of a finish cut using a ball-end mill in high speed machining, low machinability at the bottom of a tool produces a harmful effect on surface roughness. The developed interpolator considers the relation between inclined angle, surface roughness, and feed rate, and adjusts real-time feed rate in order to generate surfaces which have isotropic surface roughness. The proposed interpolator is fully implemented and an experimental results are shown.

  • PDF

Real-time control & monitoring software of an AS/RS for CIM (CIM 구축을 위한 자동창고의 실시간 제어 및 모니터링 S/W)

  • 손경준;오구일;정무영;이현용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.826-831
    • /
    • 1991
  • Automated Storage and Retrieval System (AS/RS), which is an element of Computer Integrated Manufacturing (CIM), is a widely used material handling equipment with conveyors and Automatic Guided Vehicles (AGVs). Until now the evaluation of operational policies of AS/RS and control algorithms is done theoretically or by computer simulations. In this study, a real-time control and monitoring software of an AS/RS is also developed by making actually moving AS/RS miniature. A PC-based real-time monitoring program can control the AS/RS directly through the communication port. The monitoring program has additional functions such as storage/retrieval management, inventory management, and statistics management. The program can not only collect the necessary statistics but monitor the current action of the AS/RS concurrently.

  • PDF

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.