• Title/Summary/Keyword: PC-3 cells

Search Result 585, Processing Time 0.029 seconds

Rosuvastatin Induces ROS-mediated Apoptosis in Human Prostate Cancer PC-3 Cells (Rosuvastatin이 유도하는 ROS가 전립선암 PC-3 세포주의 세포사멸 유도에 미치는 영향)

  • Choi, Hyeun Deok;Baik, Jong Jin;Kim, Sang Hun;Yu, Sun Nyoung;Chun, Sung Hak;Kim, Young Wook;Nam, Hyo Won;Kim, Kwang Youn;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • Statins, the inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used in treatments of hypercholesterolemia and newly known as anti-cancer effect of various cancer cells. Recently, several studies suggested that reactive oxygen species (ROS) play a critical role on cell death signaling. However, mechanism of ROS by rosuvastatin is currently unclear. This study aimed to explore the molecular mechanism of apoptosis by rosuvastatin in human prostate cancer PC-3 cells. Cell viability and apoptosis-related protein expression were measured by MTT assay and western blotting, respectively. In addition, the levels of apoptosis and ROS were analyzed. The results showed that rosuvastatin dramatically reduced cell viability in a dose- and time-dependent manner. We confirmed that rosuvastatin induced apoptosis through reduction of procaspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in PC-3 cells. In addition, rosuvastatin stimulated ROS production in a dose-dependent manner and pre-treatment with N-acetylcysteine (NAC), a ROS scavenger, significantly recovered rosuvastatin-induced ROS and apoptosis. Thus, we concluded that rosuvastain induces apoptosis through generation of ROS in human prostate cancer PC-3 cells and provides a promising approach to improve the efficacy of cancer therapy.

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF

Enhancement of Dopamine Biosynthesis by Sesamin in PC12 Cells (Sesamin에 의한 PC12 세포중의 Dopamine 생합성 촉진작용)

  • Zhang, Min;Choi, Hyun-Sook;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • The effects of sesamin on dopamine biosynthesis in PC12 cells were investigated. Sesamin at concentration ranges of 20-75 ${\mu}M$ significantly increased intracellular dopamine levels and tyrosine hydroxylase (TH) activities at 24 h: 50 ${\mu}M$ sesamin increased dopamine levels to 132% and TH activities to 128% of control levels. Sesamin (50 ${\mu}M$) induced the phosphorylation of TH, cyclic AMP-dependent protein kinase (PKA) and cyclic AMP-response element binding protein (CREB) for 0.5-24 h. Sesamin (50 ${\mu}M$) also increased the mRNA levels of TH and CREB for 3-24 h. In addition, sesamin (50 ${\mu}M$) associated with L-DOPA (50 and 100 ${\mu}M$) further increased the intracellular levels of dopamine for 24 h compared to L-DOPA alone. These results suggest that sesamin enhances dopamine biosynthesis and L-DOPA-induced increase in dopamine levels by inducing TH activity and TH gene expression, which is mediated by PKA-CREB systems in PC12 cells. Therefore, sesamin could serve as an adjuvant phytonutrient for neurodegenerative diseases.

Protective Effect of Hwansodan in Serum and Glucose Deprivation Induced-apoptotic Death of PC12 Cells Via Ho-1 Expression (영양혈청 결핍성 PC12 세포고사에서 HO-1의 발현 증가를 통한 환소단의 보호 효과)

  • Jung, Jae-Eun;Kim, Jin-Kyung;Kang, Baek-Gyu;Park, Chan-Ny;Park, Rae-Kil;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1459-1466
    • /
    • 2006
  • The water extract of Hwansodan has been traditionally used for treatment of ischemic brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of Hwansodan rescues cells from neurodegenerative disease. PC12 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular mechanisms of neuronal cell damages. Under deprivation of growth factor and ischemic injury, PC12 cells spontaneously undergoes apoptotic cell death. Serum and glucose deprivation markedly decreased the viability of PC12 cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the aqueous extract of Hwansodan significantly reduced serum and glucose deprivation-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Pretreatment of Hwansodan also ingibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 was completely abolished in serum and glucose deprivated cells. Furthermore, pretreatment of Hwansodan obviously increased heme oxygenase 1 (HO-1) expression in PC12 cells. Taken together, the data suggest that the protective effects of Hwansodan against serum and glucose deprivation induced oxidative injuries may be achieved through the scavenging of reactive oxygene species accompanying with HO-1 induction.

Effects of (+)-Eudesmin from the Stem Bark of Magnolia kobus DC. var. borealis Sarg. on Neurite Outgrowth in PC12 Cells

  • Yang, Yoo-Jung;Park, Jae-In;Lee, Hak-Ju;Seo, Seon-Mi;Lee, Oh-Kyu;Choi, Don-Ha;Paik, Ki-Hyon;Lee, Myung-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1114-1118
    • /
    • 2006
  • (+)-Eudesmin [4,8-bis(3,4-dimethoxyphenyl)-3,7 -dioxabicyclo[3.3.0]octane] was isolated from the stem bark of Magnolia kobus DC. var. borealis Sarg. and found to have neuritogenic activity. $50\;{\mu}M$ (+)-eudesmin induced neurite outgrowth and enhanced nerve growth factor (NGF)-mediated neurite outgrowth from PC12 cells. At this concentration, (+)-eudesmin also enhanced NGF-induced neurite-bearing activity and this activity was partially blocked by various protein kinase inhibitors. These included PD98059, a mitogen-activated protein kinase (MAPK) kinase inhibitor. GF109203X, a protein kinase C (PKC) inhibitor and H89, a protein kinase A (PKA) inhibitor. These results suggest that (+)-eudesmin can induce neurite outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways.

Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells

  • Eom, Dae-Woon;Lee, Ji Hwan;Kim, Young-Joo;Hwang, Gwi Seo;Kim, Su-Nam;Kwak, Jin Ho;Cheon, Gab Jin;Kim, Ki Hyun;Jang, Hyuk-Jai;Ham, Jungyeob;Kang, Ki Sung;Yamabe, Noriko
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.461-466
    • /
    • 2015
  • Epigallocatechin gallate (EGCG) and curcumin are well known to naturally-occurring anticancer agents. The aim of this study was to verify the combined beneficial anticancer effects of curcumin and EGCG on PC3 prostate cancer cells, which are resistant to chemotherapy drugs and apoptosis inducers. EGCG showed weaker inhibitory effect on PC3 cell proliferation than two other prostate cancer cell lines, LNCaP and DU145. Co-treatment of curcumin improved antiproliferative effect of EGCG on PC3 cells. The protein expressions of p21 were significantly increased by the co-treatment of EGCG and curcumin, whereas it was not changed by the treatment with each individual compound. Moreover, treatments of EGCG and curcumin arrested both S and G2/M phases of PC3 cells. These results suggest that the enhanced inhibitory effect of EGCG on PC3 cell proliferation by curcumin was mediated by the synergic up-regulation of p21-induced growth arrest and followed cell growth arrest. [BMB Reports 2015; 48(8): 461-466]

Study on Apoptosis-Inducing Effect and Mechanism by Tarisodokyeum in PC-3 cells (탁리소독음(托裏消毒飮)의 PC-3 세포에 대한 세포고사 유도 효과 및 기전 연구)

  • Park, Hyung-Kwon;Kwon, Kang-Beom;Kim, Eun-Kyung;Han, Mi-Jeong;Song, Mi-Young;Lee, Young-Rae;Park, Byung-Hyun;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.946-950
    • /
    • 2006
  • Takrisodokyeum (TRSDY) has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that TRSDY induced apoptosis in androgen-independent prostate cancer PC-3 cells as evidenced by DNA fragmentation. Our data demonstrated that TRSDY-induced apoptotic cell death was accompanied by decreases of PAKT and $NF-{\kappa}$ activation, which is resulted from inhibition of $I{\kappa}B-{\alpha}$ degradation. But TRSDY-induced apoptotic effect of PC-3 cells was independent of Par-4 expression. Taken together, these results suggest that TRSDY inhibits AKT phosphorylation and $NF-{\kappa}B$ activation, and eventually leads to apoptotic cell death in androgen independent prostate cancer PC-3 cells.

Effects of the water extract from Achyranthis Radix on serum-deprivation-induced apoptosis in PC12 cells and transient cerebral middle artery occlusion-induced ischemic brains of rats (우슬 물추출물의 허혈성 뇌 손상에 대한 보호효과 연구)

  • Oh, Tae-Woo;Park, Ki-Ho;Lee, Mi-Young;Choi, Go-Ya;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Objectives : This work was designed to investigate the effect of The root of Achyranthes japonica Nakai (AJN) water extract on serum deprivation reperfusion-induced apoptosis in PC-12 cells and transient middle cerebral artery occlusion (tMCAO)-induced ischemic brains of rats. Methods : Apoptosis in PC12 cells was induced by serum deprivation and reperfusion. The cells were treated with AJN water extract at doses of 0.5 and 1.0 mg/ml for 24 hr after inducing the apoptosis. Cell viability was determined by WST-1 assay. The expression of caspase-3 protein was determined by Western blot. Ischemic brains were prepared from tMCAO-induced ischemic rats after oral administration with AJN at dose of 50 and 100 mg/kg, and then brain infarction was measured by TTC staining. Results : AJN significantly increased the cell viability in apoptocic-induced PC-12 cells, and also decreased the expression of caspase-3 protein. Furthermore, the administration of AJN significantly inhibited tMCAO-induced brain infarction in rats. Conclusions : Our results suggest that AJN extract has a neuroprotective property via suppressing the apoptosis in PC12 cells and the infarction of ischemic brains.

Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells

  • Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5697-5701
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-$1000{\mu}g/ml$). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. Conclusions: Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.

[Pt(II)(cis-DACH) (DPPE)] .$2NO_3$: A Novel Class Of Platinum Complex Exhibiting Selective Cytotoxicity to Human Ovarian Carcinoma Cell Lines and Normal Kidney Cells

  • Jung, Jee-Chang;Chu, Min-Ho;Chang, Sung-Goo;Lee, Kyung-Tae;Rho, Young-Soo
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.125-132
    • /
    • 1997
  • Cisplatin, a platinum-complex, is currently one of the most effective compounds used in the treat-ment of solid tumors. However, its use is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving selective cytotoxicity. We synthesized new Pt (II) complex analogue containing 1,2-diaminocyclohexane (DACH) as carrier ligand and 1,2-bis (diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of [Pt(cia-DACH)(DPPE)] . $2NO_3$ (PC) was synthes-ized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $_{13}$carbon nuclear magnetic resonance (NMR)] .PC demonstrated acceptable and significant antitumor activity against SKOV-3 and OVCAR-3 human ovarian carcinoma cell lines as compared with that of cisplatin. The cytotoxicity of PC in normal cells was found quite less than that of cisplatin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), ($^3$H)thymidine uptake and glucose consumption tests in rabbit renal proximal tubular cells, human renal cortical cells and tissues. In conclusion, PC is considered to be more selective cytotoxicity toward human ovarian cancer cells than normal human/rabbit kidney cells.

  • PDF