• 제목/요약/키워드: PBS nozzle

검색결과 4건 처리시간 0.025초

Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

  • Wang, Ming;Zheng, Jinxing;Song, Yuntao;Li, Ming;Zeng, Xianhu
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2064-2071
    • /
    • 2020
  • For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

Release proporties of ovalbumin from alginate microspheres prepared using the nozzle in spray dryer system

  • Park, Jeong-Eun;Lee, Chang-Moon;Park, Hee-Jung;Kim, Gwang-Yun;Rhee, Joon-Haeng;Lee, Ki-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.570-573
    • /
    • 2005
  • 분무법을 이용한 alginate microsphere를 제조한 결과 구형을 형성하는 것을 관찰하였고, 이러한 alginate microsphere에서 alginate 농도가 증가할수록 크기는 작아지고, chitosan/alginate microsphere에서 chitosan의 농도가 증가할수록 그 크기가 증가하는 것을 확인하였다. OVA의 방출정도는 alginate microsphere에서 alginate 농도가 증가할수록 잘 이루어지지 않았고, HCl buffer에서보다 PBS buffer에서 방출이 잘되는 것을 확인하였다. Chitosan/alginate microspheres에서는 chitosan의 농도가 증가할수록 방출이 잘되지 않았고, 이는 alginate microsphere에서와 마찬가지로 PBS buffer에서 방출이 잘 이루어지는 것을 확인하였다.

  • PDF

고체 추진기관 선진국 기술 동향에 관한 연구 (A Study on the Advanced Technology of Solid Rocket Propulsion)

  • 김형원;박종승
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.221-224
    • /
    • 2010
  • 최근에 인공위성을 궤도에 올리는데 막대한 비용이 들어가므로, 소형이면서 좀 더 신뢰도가 높은 인공위성이 요구되어 왔다. 추진제의 새로운 바인더(HTPB, GAP)와 산화재(CL20, ADN)의 발명은 로켓의 추력을 다양하게 하는데 많은 기여를 했다. 제조 공정을 획기적으로 변화시키는 낮은 온도에서 녹는 열가소성 추진제는 비용을 상당히 절감시켰다. 인공위성을 궤도에 정확하게 안착시키는데 어려움이 있었던 고체 연료 로켓은 액체추진제를 사용하는 PBS를 상단에 추가 설치함으로 정확도를 증진시켰다. 이 논문에서 또한 선진화된 노즐재료와 연소관에 대해서도 방향을 제시한다.

  • PDF

유화법과 분무법에 의해 제조된 경구백신용 알긴산 마이크로스피어의 평가 (Evaluation of Alginate Microspheres Prepared by Emulsion and Spray Method for Oral Vaccine Delivery System)

  • 장혁;지웅길;맹필재;황성주
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.241-256
    • /
    • 2001
  • Alginate microspheres, containing fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) or green fluorescent protein (GFP) were prepared and used as a model drug to develop the oral vaccine delivery system. The alginate microspheres were coated with poly-L-lysine or chitosan. Two methods, w/o-emulsion and spray, were used to prepare alginate microspheres. To optimize preparation conditions, effects of several factors on the particle size and particle morphology of microsphere, and loading efficiency of model antigen were investigated. In both preparation methods, the particle size and the loading efficiency were enhanced when the concentration of sodium alginate increased. In the w/o-emulsion preparation method, as the concentration of Span 80 was increased from 0.5% to 2%, the particle size was decreased, but the loading efficiency was increased. The higher the emulsification speed was, the smaller the particle size and loading efficiency were. The concentration of calcium chloride did not show any effect on the particle size and loading efficiency. In the spray preparation method, the particle size was increased as the nozzle pressure $(from\;1\;kgf/m^2\;to\;3\;kgf/m^2)$ and spray rate was raised. Increasing calcium chloride concentration (<7%) decreased the particle size, in contrast to no effect of calcium chloride concentration on the w/o-emulsion preparation method. Alginate microspheres prepared by two methods were different in the particle size and loading efficiency, the particle size of microspheres prepared by the spray method was about $2-6\;{\mu}m$, larger than that prepared by the w/o emulsion method $(about\;2{\mu}m)$, and the loading efficiency was also higher with spray method. Furthermore, drying process for the microspheres prepared by the spray was simpler and easier, compared with the w/o emulsion preparation. Therefore, the spray method was chosen to prepare alginate microspheres for further experiments. Release pattern of FITC-BSA in alginate microspheres was evaluated in simulated intestinal fluid and PBS (phosphate buffered saline). Dissolution rate of FITC-BSA from alginate/chitosan microsphere was lower than that from alginate microsphere and alginate/poly-L-lysine microsphere. By confocal laser scanning microscope, it was revealed that alginate/FITC-poly-L-lysine microspheres were present in close apposition epithelium of the Peyer's patches of rabbits following inoculation into lumen of intestine, which proved that microspheres could be taken up by Peyer's patch. In conclusion, it is suggested that alginate microsphere prepared by spray method, showing a particle size of & $10\;{\mu}m$ and a high loading efficiency, can be used as a model drug for the development of oral vaccine delivery system.

  • PDF