• Title/Summary/Keyword: PBD 공법

Search Result 38, Processing Time 0.021 seconds

A Case Study on the Improvements of Soft Ground Using PBD Method in Pusan New Port (부산신항 연약지반에 적용된 PBD공법의 지반개량 시공사례)

  • Son, Jin-Hyun;Kim, Ji-Yong;Byun, Ki-Jun;Lee, Byung-Gil;You, Seung-Kyong;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In This paper, the settlements of soft ground and the undrained shear strength were compared for verify the improvement effect of PBD method, completed in the Busan New Port phase 1-1 site. Through the describing of design cases with the PBD method, the effects of the improvement method with CPT data were evaluated comparing with measured results. We expect that the output from this research is useful in future for design and analysis when similar soft grounds are planned to be used.

  • PDF

Development of Automatic PBD Construction Quality Measuring System for Soft Foundation Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Shin, Ye-Ho;Kim, Tae-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1159-1162
    • /
    • 2010
  • 연약지반 문제를 해결하기 위한 방안으로 세계 각국에서 연약지반 개량공법의 하나인 연직배수공법이 주로 사용되고 있다. 연직배수공법은 연약한 점성토 지반 내에 인공적으로 연직 배수재을 다수 설치하여 배수거리를 단축시킴으로써 압밀을 촉진시키고, 그에 따른 강도증가 효과를 얻을 수 있는 공법이다. 연직배수재로 경제성과 시공성이 우수한 PBD가 널리 사용되고 있다. PBD 시공품질은 시공 깊이, 압력, 수직도 등에 영향을 받을게 된다. 본 논문에서는 PBD 시공시 배수재의 시공 심도, 압력, 수직도를 자동측정하여 작업자가 실시간으로 모니터링 할 수 있고 시공결과를 자동 저장하는 시스템을 개발하였다. 개발된 시스템은 시공 불량 요인이 발생시 자동 경고하여 불량률을 줄일 수 있고, 장비의 이상 발생시 자동 제어시스템을 가동하여 작업의 안전성을 확보하도록 하였다.

  • PDF

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

Development of Automatic PBD Construction Quality Measurement System for Soft Ground Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Mun, Sang-Don;Kim, Hang-Young;Kim, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.605-610
    • /
    • 2011
  • Soft ground improvement is essential to enhance strength of ground for construction in reclaimed land or shore. There are many method of soft ground improvement, and vertical drain method was widely used in many countries including korea. As vertical drain method is to plant many Prefabricated Vertical Drains in soft ground, it promotes consolidation and enhances strength. The PBD(Plastci Board Drain) that is excellent economy and workability was widely used in many countries as Prefabricated Vertical Drains. Construction quality of PBD is affected installation depth, pressure, perpendicularity. This paper describes the system developed that can automatically measure installation depth, pressure and perpendicularity for PBD. This system can reduce fraction defective of construction by auto faulty alarm and keeps the safety of operator by auto control system.

An Analysis of the Effect of PBD Discharge Capacity to Leave Period (방치기간에 따른 PBD의 통수능 효과 분석)

  • Lee, Keeyong;Park, Minchul;Jeong, Sangguk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.39-49
    • /
    • 2011
  • Recently PBD method, one of acceleration of consolidation methods is used in the soft ground to shorten consolidation time for fast settlement during construction. It is economical and easy to work. Discharge capacity of PBD is sensitive in proportion to thickness of soft ground layer, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity is large according to ground condition, construction condition and soil properties. In addition, when embankment loading is not conducted instantly after PBD setting due to rain or lack of embankment material supply, it causes leaving period problems. But cause and analysis of those problems for discharge capacity is lack. So, in this test, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with leaving period. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. Then leave 0day, 30day, 60day and 90day. And then, load following the loading step of 30, 70 and 120kPa using a pressure device. As a result, the longer leaving period, discharge capacity is reduced. It is caused by a decrease of discharge area caused by creep transformation moisture absorption of PBD filter after long leaving period.

An Analysis of the Composite Discharge Capacity Effect with GCP Method (GCP공법의 복합통수능 효과 분석)

  • Park, Minchul;Kwon, Hyukchan;Shin, Hyohee;Jang, Gisoo;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.37-46
    • /
    • 2011
  • An application frequency of vertical drainage method is increasing as an effective consolidation acceleration method. PBD method is most frequently used as a consolidation acceleration method in vertical drainage methods. PBD is economical and easy to operate but has some problems those are an environmental pollution and a decrease of a discharge capacity caused by bending of drainage materials when it is used in great depth. SCP method was frequently used because it's discharge capacity was good but now it is rarely used because of an increase of the material price because of an order imbalance. As the way to solve these problems, GCP method has been to the fore. For analyzing the effect of GCP method on the discharge capacity, three types of composite discharge capacity tests are done by using GCP, SCP and PBD respectively with the circle case, ${\phi}38{\times}h70cm$. On the contrary to this, GCP shows the worst discharge capacity for a decrease of the void ratio and the clogging phenomenon caused by increasing load. Also to figure out the clogging range of GCP, the clogging of GCP is checked in each load stage with a large case($1.0m{\times}0.5m{\times}1.1m$) which has clear acrylic front face. The diameter of GCP was 35cm and a clogging phenomenon occurred in 10% approximately. The result shows that the discharge capacity of GCP was given the lowest value for a decrease of the void ratio and the clogging phenomenon causing by increasing load. And the clogging phenomenon mostly occurred within 10% of GCP's diameter range.

A Study on Filed Application of Electro-Osmosis Soil Improvement Method with Nano-Coated Plastic Drain Baord (나노 코팅된 PDB를 이용한 동전기 지반개량 공법의 현장 적용성에 관한 연구)

  • Ahn, Sangro;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.5-11
    • /
    • 2018
  • The PBD (Plastic Board Drain) method is one of effective ground improvement methods on the soft dredging reclamation ground. This method has outstanding economic efficiency and constructability, and it is widely used for the soft ground improvement. However, the PBD method reduces permeability and drainage capacity of the ground due to the long construction period. Therefore, the nano coated Plastic drain board (PDB) was developed to solve problems. It is the non-metallic electrode and improves the weakness of the PBD method by using electric force of the electro-osmosis method. Various researches have been conducted to apply the nano coated PDB, but these researches were limited to model tests in laboratory. In this study, model and field tests were conducted to assess field applicability of the nano coated PDB. The result showed that the nano coated PDB had the better effect on the ground improvement compared to the normal PDB.

Residual Settlement Behavior in Soft Ground Improved by PBD during Operating Facilities (PBD공법이 적용된 연약지반에서 운용 중인 시설물의 잔류침하거동)

  • Kang, Gichun;Kim, Taehyung;Jeong, Choonggi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.13-21
    • /
    • 2014
  • The Plastic Board Drain is used to improve soft soils deposited in container terminal area at a port. This paper describes settlement behavior of soft ground in this area from PBD installation to the time of operating facilities. Previous researches focused on soil improvement effect of PBD, that is, the settlement occurred during ground improvement period. The residual settlement occurred during operating the facility is very important from the maintenance and management point of view. However, the study of this residual settlement has been rarely conducted. In this study, by analyzing the measured settlement data obtained from the container terminal area at the port, it was verified that the residual settlement induced during operating facilities occurred in a layer with PBD improvement. In addition, by comparison the settlement predicted by a numerical analysis with the settlement measured in the field, it was confirmed that the actual settlement is in the range of predicted settlement.

Quality and Measure Controls for Plastic Board Drains Method (PBD공법의 품질 및 계측관리)

  • 박영목
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.133-145
    • /
    • 2001
  • This paper presents quality and measure controls of Plastic Board Drains(PBD) for improvement of soft ground. Laboratory and field tests has been carried out to evaluate the quality of PBD focussing on : discharge capacity of flow area; permeability of filter sleeve; migration of fine particles; deformed shape of PBD; consolidation of clay in the close vicinity of PBD; tensile strength of PBD; long-term consolidation behavior of clay-PBD. Test results show that the quality of PBD is sufficient to perform the improvement of soft silty and clayey ground. But, geotechnical engineer must make efforts minimizings of PBD damage and ground disturbance, continuity of drainage system during construction. Adequate monitoring system should apply at ground focussing on number, location, and accuracy of geotechnical instrumentation, measurement and evaluation of data for ground behaviour.

  • PDF

Comparison on the Performance of Soil Improvement in Thick Soft Ground Using Single-Core and Double-Core PBD (단일 및 이중 코어 PBD에 의한 대심도 연약지반 개량 효과에 관한 비교연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Kim, Hyung-Sub;Lee, Woo-Jin;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.33-45
    • /
    • 2009
  • The conventional single-core PBDs have been widely used in order to accelerate consolidation settlement of soft grounds. When using the single-core PBD in a thick clay deposit, a delay of consolidation may occur due to high confining pressure in the thick deposit and necking of drains. This study is to compare the performances of soil improvement by the single-core and double-core PBD installed at a site in Busan New Port which exhibits approximately a 40m-thick clay layer. An in-situ test program was performed at the test site where a set of the double-core PBDs and single-core PBDs were installed to compare the efficiency of each drain. In addition, the discharge capacity of each PBD has been measured using the modified Delft Test. A series of laboratory tests for estimating in-situ soil properties have also been performed in order to obtain input parameters for a numerical program ILLICON. The discharge capacity of the double-core PBD is higher than that of the single-core PBD in the modified Delft Test. However it is observed from the comparative in-situ test and numerical analysis that there is no difference in the performance of ground improvement between the two drain systems. This discrepancy comes from the fact that the amount of water released during consolidation in most common field conditions is much smaller than the capacity of even the single core PBD. And thus, considering actual field conditions, it can be concluded that the single-core PBD has enough discharge capacity even in the thick clay deposit such as this test site.