• Title/Summary/Keyword: PBD(Performance Based Design)

Search Result 60, Processing Time 0.022 seconds

A Study on Validation for Mapping of Gas Detectors at a BTX Plant (BTX 공정에서 Gas Detector Mapping 적정성 검토에 관한 연구)

  • Seo, Ji Hye;Han, Man Hyoeng;Kim, Il Kwon;Chon, Young Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.168-178
    • /
    • 2017
  • In order to prevent major and chemical accidents, some of the plants which would like to install and operate hazard chemicals handling facilities must submit Off-site Consequence Analysis due to recent arisen leak accidents since 2015. A lot of chemical industrials choose gas detectors as mitigation equipment to early detect gas vapor. The way of placement of gas detectors has two methods; Code-based Design(CBD) and Performance-based Design. The CBD has principles for gas detectors to be installed with consideration for the place that is expected to accumulate gas, and the leak locations according to legal standards and technical guidelines, and has a possibility to be unable to detect by these rules to locate gas detectors by vapor density information. The PBD has two methods; a Geographic Method and Scenario based Method. The Scenario-based Method has been suggested to make up for the Geographic Coverage Method. This Scenario-based Method draw the best optimum placement of gas detectors by considering leak locations, leak speed information, leak directions and etc. However, the domestic placement guidelines just refers to the CBD. Therefore, this study is to compare existing placement location of gas detectors by the domestic CBD with placement locations, coverages and the number of gas detectors in accordance with the Scenario-based Method. Also this study has measures for early detecting interest of Vapor Cloud and suitable placement of gas detectors to prevent chemical accidents. The Phast software was selected to simulate vapor cloud dispersion to predict the consequence. There are two cases; an accident hole size of leak(8 mm) from API which is the highst accident hole size less than 24.5 mm, and a normal leak hole size from KOSHA Guide (1.8 mm). Detect3D was also selected to locate gas detectors efficiently and compare CBD results and PBD results. Currently, domestic methods of gas detectors do not consider any risk, but just depend on domestic code methods which lead to placement of gas detectors not to make personnels recognize tolerable or intolerable risks. The results of the Scenario-based Method, however, analyze the leak estimated range by simulating leak dispersion, and then it is able to tell tolerable risks. Thus it is considered that individuals will be able to place gas detectors reasonably by making objectives and roles flexibly according to situations in a specific plant.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

A Study on the Problem of Pressure and Flow Rate by Prescriptive Code Based Design of Fire Sprinkler System (사양위주 스프링클러설비 설계의 압력과 유량의 문제점에 대한 고찰)

  • Jeong, Keesin;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.14-19
    • /
    • 2013
  • National Fire Safety Code 103 regulates that all operating sprinkler in design area must be discharged 1 bar or more pressure and release 80 lpm or more flow rate as minimum criteria. NFSC103 also provides that the number of operating sprinkler in design area is 10, 20, 30 according to the building classification and the total flow rate is 800, 1,600, 2,400 lpm depending on 80 lpm per sprinkler. If sprinkler system is designed as above provisions, the pressure and the flow rate accordingly become smaller than the minimum criteria about 50 % sprinklers. It results in serious consequence that the purpose of sprinkler system as initial fire reaction equipment is failure. In order to solve these problems, It is desirable that Performance-based fire protection design, hydraulic calculation, is carried out to all sprinkler system.

Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex (복합영상관 단일 가연물의 디자인 화재곡선 평가)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong;Oh, Chang Bo;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.18-27
    • /
    • 2020
  • An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).

Development and Application of Evacuation and Fatalities Assessment Program (대피 및 인명피해 평가 프로그램 개발 및 적용사례)

  • Yoon, Sung-Wook;Rie, Dong-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Evacuation and Fatalities Simulation is one of the core technologies for performance based design. Recently, developed programs in foreign countries have limitations such as simple fatality calculation and coarse visual interface. This study developed an advanced evaluation program for evacuation and fatalities to overcome limitations of existing programs and improve various applications, i.e., an evacuation algorithm using elevators as well as evacuation stairs. In addition, the evaluation program can let users make a decision of fatalities from fire by coupling with FDS (Fire Dynamics Simulator) from NIST and realizes three-dimensional virtual space using a graphic module.

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

The Effects of the Area of Openings on the Performance of a $CO_2$ Extinguishing System -The CFD Simulations of the Oil Surface Fire in a Machine Room- (개구부 면적이 $CO_2$ 소화설비의 소화성능에 미치는 영향 -기계실 석유 표면화재의 CFD simulations-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Park, Jong-Tack
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Carbon dioxide($CO_2$) agent, which has more safely extinguished fire than any other gaseous fire extinguishing agents, has been widely used in various protected enclosures and types of fires. According to the concept of performance-based design(PBD). $CO_2$ extinguishing system to be designed is needed to be evaluated for the performance of fire suppression with possible fire scenarios in an enclosure. In this paper, CFD simulations were carried out to study the effects of opening area on the performance of $CO_2$ extinguishing system and the flow characteristics in the machine room of $100m^3$ in which kerosene spill fire happened. This study showed that time of fire suppression increased linearly in proportion to the size of opening area, and fires for each model were completely suppressed prior to the end of discharge of $CO_2$ agent. It was shown that mass flow rate through opening was influenced by the combined effects of heat release rate of fire and discharge of $CO_2$ agent. After $CO_2$ agent was completely discharged, oxygen concentrations in enclosures for each model were lower than the limit concentration of combustion.

Analysis of Prediction Results and Grid Size Dependence According to Changes in Fire Area (화원면적 변화에 따른 격자 크기 의존도 및 예측결과 분석)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.9-19
    • /
    • 2019
  • In fire simulations for building fire safety evaluation, changes in the fire area and grid size can significantly influence the prediction results. Therefore, the effects of area changes of the fire source with identical maximum heat release rates on the prediction results of a compartment fire were investigated. The dependence of the prediction results on the grid size using the identical fire area was also examined. No significant changes were observed in the thermal and chemical characteristics of the fires with variable grid sizes, even though the fire area was changed when six or more grids were set based on the fire diameter. In addition, changes in the fire area caused significant differences in the prediction of major physical quantities associated with available safety egress time (ASET) within a compartment. However, the fire area changes did not considerably influence the overall fire characteristics outside the compartment after reaching a certain distance from the opening.

A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate (밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구)

  • Yun, Hong-Seok;Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.19-27
    • /
    • 2017
  • The effects of changes in area and location of fire source, fire growth rate, and volume of compartment on the major fire characteristics, including heat release rate, in closed compartment fires were examined. To this end, a fire simulation using Fire Dynamics Simulator (FDS) was performed for ISO 9705 room with a closed opening. As main result, it was found that the changes in the area and location of fire source did not significantly affect the thermal and chemical characteristics inside the compartment, such as maximum heat release rate, total heat release, maximum temperature at upper layeras well as species concentrations. However, increasinthe fire growth rate and volume of compartment resulted in increase of the maximum heat release rate and total heat release, decrease in the limiting oxygen concentration and increase in the maximum CO concentration. Finally, a methodology for the application of fire growth curves to closed compartment fires was proposed by deriving the correlation of the maximum heat release rate expressed as a function of the fire growth rate and the volume ratio of compartment based on the ISO 9705 room.

Measurement of the Device Properties of Photoelectric Smoke Detector for the Fire Modeling (화재모델링을 위한 광전식 연기감지기의 장치물성 측정)

  • Cho, Jae-Ho;Mun, Sun-Yeo;Hwang, Cheol-Hong;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially required for the reliable design of evacuation safety using the fire modeling. The main objective of the present study is to measure input information in order to predict the accurate activation time of photoelectric smoke detector adopted in fire dynamics simulator (FDS) recognized a representative fire model. To end this, the fire detector evaluator (FDE) which could be measured the device properties of detector was used, and the input information of Heskestad and Cleary's models was obtained for a spot-type photoelectric smoke detector. In addition, the activation times of smoke detector predicted using default values into FDS and measured values in the present study were quantitatively compared. As a result, the Heskestad model could result in an inaccurate the activation time of photoelectric smoke detector compared to the Cleary model. In addition, there was a distinct difference between the default values used into FDS and the measured values in terms of device properties of smoke detector, and thus the activation time also showed a significant difference.