• Title/Summary/Keyword: PARTICLE SIZE

Search Result 7,284, Processing Time 0.034 seconds

Changes in Volatile Components and Capsaicin of Oleoresin Red Pepper during Cooking (고추 Oleoresin의 가열조리중 휘발성 성분 및 Capsaicin의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.232-237
    • /
    • 1994
  • Changes of volatile components in modified oleoresin red pepper during cooking at high temperature were investigated. Dried red pepper was milled to 100mesh of size particle and oily compounds were extracted by reduced pressure steam distrillation. The rest part was reextracted and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleoresin red pepper 119 volatile compounds were separated from the dried red pepper and oleoresin and 35 components were identified in both samples. The major flavor compounds were identified to be 2-methoxy-phenol, 2, 6-bis(1, 1-dimethylethyl)-4-methyl-phenol, 1, 4-dimethylbenzene, thylbenzene, 1, 2-benzenedicarboxylic acid, 2-methoxyl-4-methylphenol, 4-ethyl-2-methoxy-phenol, and 5- methyl-2-furancarboxyaldehyde, and their transferal from raw red pepper to oleresin was low. 93 voltilie compounds were isolated after 3 hours cooking at 100 and 82 volitile compounds were separated after that at $150^{\circ}C$. Degeneration of volatile compounds was peculiarly proportional to the temperature of cooling. Capsaicin was relatively stable during cooking and remaining ratio after cooking at 100 and $150^{\circ}C$ was 84.7% and 73.3%. respectively. Oleoresin from red pepper had a little antioxidation effect at $100^{\circ}C$ cooking, but, antioxidation effect at $150^{\circ}C$ cooking was not shown due to degradation of capsaicin.

  • PDF

Quality Characteristics of Adzuki Beans Sediment According to Variety (품종에 따른 팥 앙금의 품질 특성)

  • Song, Seuk-Bo;Seo, Hye-In;Ko, Jee-Yeon;Lee, Jae-Saeng;Kang, Jong-Rae;Oh, Byeong-Geun;Seo, Myung-Chul;Yoon, Young-Nam;Kwak, Do-Yeon;Nam, Min-Hee;Woo, Koan-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1121-1127
    • /
    • 2011
  • We evaluated the quality characteristics of adzuki bean sediment according to variety. The moisture, crude protein, and crude ash contents of the various adzuki bean varieties were 8.2~11.1, 15.4~20.6 and 3.3~3.6 g/100 g, respectively. The potassium contents of Chilbo-pat (CB) and Hongeon-pat (HE) were 875.1 and 873.1 mg/100 g, respectively. The calcium contents of Jungbu-pat (JB) and Kumsil-pat (KS)were 73.6 and 73.2 mg/100 g, respectively. A high level of magnesium (131.4 mg/100 g) was found in Yeonkeum-pat (YK). The yields of adzuki bean sediment according to variety were no different either wet (188.3~204.7%) or dry (62.1~66.0%). The L-values on sediment of YK and KS were 67.0 and 68.0, respectively; however, the CB L-value was low at 54.0. A high level of a- (6.6) and b-value (12.8) was found in YK; however, the values for CB were much lower at 3.8 and 5.9, respectively. There was no difference in particle-size distribution, water binding capacity, and solubility of adzuki bean sediment according to variety. High levels of peak (3.79 RVU), trough (3.75 RVU), final (7.33 RVU), and setback viscosity (3.54 RVU) were found in JB. The sensory properties of products in food processing are important, and the variety of adzuki bean sediment should be chosen depending on desired product characteristics.

The Flora of Vasular Plants and the Vegetation on the Tidal Flat in Jebudo(Island) (제부도 갯벌식생과 소산 식물상에 관한 연구)

  • Shin, Kyung-Mi;Ahn, Young-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.1
    • /
    • pp.52-69
    • /
    • 2006
  • The flora of vascular plants and the vegetation on the tidal flat was investigated in Jebudo located at Hwaseong city of Gyeonggi-do province from 2004 to 2005. Jebudo has been considered to show difference from the flora which is peculiar to island as it became semi-land by free traffic to mainland with the installation of a road which had enabled entry into the Jebudo in 1991 due to sea-splitting phenomenon. The result of the vascular plants in Jebudo were consissted of 305 taxa; 264 species, 38 varieties and 3 forms of 202 genera of 74 families. As a result of examination by distinctive survey areas within Jebudo, a tidal flat(I) region where the halophyte was being spread has been researched as 7 taxa; 7 species of 6 genera of 5 families. The taxa in Godo-Island(II) was reseached as 50 taxa; 39 species, 11 varieties and 42 genera of 24 families. The taxa in Sand dune area(III) was reseached as 61 taxa; 52 species and 9 varieties of 53 genera of 25 families. The most plant species was reseached in Mt. Tapjae (IV) reaseach area among the reseach areaes 136 taxa; 118 species, 17 varieties and 1 form of 108 genera of 55 families. The taxa in Dangje Mt.(V) was reseached as 119 taxa; 105 species, 13 varieties and 1 form of 95 genera of 45 familes. The taxa in Dongmi Mt. (VI) was reseached as 100 taxa; 85 species and 15 varieties of 83 enera of 43 families. The taxa in Paddy field(VII) was reseached as 120 taxa; 106 species, 13 varieties and 1 form of 86 genera 31 families. Especially, a Crypsinus hastatus community which is a rare plant designated by Korea forest service and a preservation plant designated by the natural environment preservation law (1998) has been discovered at a cliff of Topjae mountain near the ferry located at the northeast side. According to the result of researching halophyte communities which make up the zonation according to the environmental gradient, the communities were being formed in the order of Limonium tetragonum community, Phragmites communis community, Carex scabrifolia community, Triglochin maritimum community and Carex scabrifolia community in accordance with the order of soil particle size with breakwater as their standard.

Formation of Liquid Crystalline with Hydrogenated Lecithin and Its Effectiveness (수소첨가레시친을 이용한 액정 젤의 형성과 보습효과)

  • Kim, In-Young;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2004
  • This study described about method that forms liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in O/W emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following, to form liquid crystal, an emulsifier used 4.0wt% of cetostearyl alcohol (CA) by 4.0wt% of HL as a booster. Moisturizers contained 2wt% of glycerin and 3.0wt% of 1,3-butylene glycol (1,3-BG). Suitable emollients used 3.0wt% of cyclomethicone, 3.0wt% of isononyl isononanoate (ININ), 3.0wt% of cerpric/carprylic triglycerides (CCTG), 3.0wt% of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions (pH=4.0-11.0). Considering safety of skin, pH was the most suitable 6.0${\pm}$1.0 ranges. The stable hardness of LCG formation appeared best in 32 dyne/$\textrm{cm}^2$. Particle of LCG is forming size of 1-20$\mu\textrm{m}$ range, and confirmed that the most excellent LCG is formed in 1-6$\mu\textrm{m}$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi -layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased 36.6%. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

Physicochemical properties and protease activities of microencapsulated pineapple juice powders by spray drying process (분무건조공정을 이용한 파인애플 착즙액 미세캡슐 분말의 물리화학적 특성 및 protease 활성)

  • Park, Hye-Mi;Chae, Ho-Yong;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.84-90
    • /
    • 2015
  • The physicochemical properties and protease activities of spray-dried pineapple juice powders were investigated. The pH, soluble solids, and protease activity of the pineapple juice were pH 5.43, $12.8^{\circ}Brix$, and 4.82 unit/mL, respectively. The optimum pH and temperature of the protease activity from pineapple juice were pH 7.0 and $50^{\circ}C$, respectively. The microencapsulation of pineapple juice was achieved using maltodextrin and alginic acid through spray-drying. The L value and moisture content of the spray-dried powder were higher than those of the freeze-dried powder. The particle size of the freeze-dried powder ($501.57{\mu}m$) was higher than that of the spray-dried powder ($42.58-53.32{\mu}m$). The water absorption and water solubility of the powders were 0.41-0.87, and 90.45-99.76%, respectively. When compared, the protease activities were found to be in the following order : FD (1,297.47 unit/g) > SD-MA-1 (692.08 unit/g) > SD-MA-2 (664.66 unit/g) > SD-MA-3 (642.65 unit/g) > SD-M (633.51 unit/g). In the in vitro dissolution study measurements were conducted for 4 hr in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, using a dissolution tester at $37^{\circ}C$ in 50 rpm. The protease survival of the 3.74-15.69% microencapsulated pineapple juice powders improved with an increase in the treatment concentration of alginic acid.

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Investigation of the effect of water chemistry on biologically mediated flocculation in the aquatic environment (수질화학 조성이 수자원환경에서의 미세 부유입자 응집 거동에 미치는 영향 연구)

  • Choi, Jeong Wooa;Lee, Byung Joon
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.715-723
    • /
    • 2017
  • Extracellular Polymeric Substances (EPS) in the water environment assemble fine, colloidal particles, such as clays, microorganisms and biomass, in large flocs, which are eventually subject to sedimentation and deposition and determine water/sediment quality and quantity. This study hence aimed to investigate the way that water and colloidal chemistry affects EPS-mediated flocculation of colloidal particles, using a jar-test experiment. Especially, ionic strength, divalent cation and humic substances concentrations were selected as experimental variables in the jar-test experiments, to elucidate their effects on EPS-mediated flocculation. A higher ionic strength increased flocculation capability, reducing electrostatic repulsion between EPS-attached colloidal particles and enhancing particle aggregation. 0.1 M NaCl ionic strength had higher flocculation capability, with 3 times larger floc size and 2.5 times lower suspended solid concentration, than 0.001 M NaCl. Divalent cations, such as $Ca^{2+}$, built divalent cationic bridges between colloidal particles and EPS (i.e., $colloid-Ca^{2+}-EPS$ or $EPS-Ca^{2+}-EPS$) and hence made colloidal particles to build into large, settelable flocs. A small $Ca^{2+}$ concentration enhanced flocculation capability, reducing suspended solid concentration 20 times lower than the initial dosed concentration. However, humic substances, adsorbed on colloidal particles, reduced flocculation, because they blocked EPS adsorption on colloidal particles and increased negative charges and electrostatic repulsion of colloidal particles. Suspended solid concentration in the tests with humic substances remained as high as the initial dosed concentration, indicating stabilization rather than flocculation. Findings about EPS-mediated flocculation in this research will be used for better understanding the fate and transport of colloidal particles in the water environment and for developing the best management practices for water/sediment quality.

Genesis and Classification of the Red-Yellow Soils derived from Residuum on Acidic and Intermediate Rocks -II. Songjeong series (산성암(酸性岩) 및 중성암(中性岩)의 잔적층(殘積層)에 발달(發達)한 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第)II보(報) 송정통(松汀統)에 관(關)하여)

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.75-81
    • /
    • 1973
  • The morphological, physical, and chemical properties of Sonjeong series derived from acidic crystalline rocks are presented. Also it deals with the genesis and classification of the Songjeong series. Morphologically these soils have brown to dark brown loam A horizons and yellowish red to red clay loam Bt horizons with moderate, medium subangular blocky structure and thin patchy clay cutans on the ped faces. C horizons are very deep, yellowish red to yellowish brown fine sandy loam or sandy loam with original rock structure. Physically distribution of particle size indicates that clay increases with depth up to argillic horizons but below the argillic horizons clay content decrease. The moisture holding capacity is fairly good in Songjeong soils. Chemically soil reaction is strongly to very strongly acid throughout the profile and content of organic matter is less than 1 per cent except A horizons. Cation exchange capacity ranges from 5 to 9 me/100g of soils and base saturation is less than 35 per cent throughout the profile. The natural fertility of Songjeong soils are usually low. It needs lime, organic matter, and heavy application of fertilizer for the crop land. These soils occur temperate and humid climate under coniferous, deciduous, and mixed forest vegetation. Songjeong soils are classified as Red-Yellow Soils. Characteristically Songjeong soils are similar to Red-Yellow Podzolic soils in the United States but lack of A2 horizons and are quite liket Red-Yellow Soils of the Japan. According to new classification system which is 7th approximation of USDA Songjeong soils can be classified as fine loamy, mesic family of Typic Hapludults and in the FAO/UNESCO project World Soil Map as Orthic Acrisols.

  • PDF

Three Phases and Water Characteristics of Horticultural Substrates (원예(園藝) 상토재료(床土材料)의 삼상(三相)과 수분특성(水分特性))

  • Jo, In-Sang;Hyun, Byung-Keun;Cho, Hyun-Jun;Jang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • A study was carried out to find out the basic information in physical properties for selection and manufacturing the good seedling media through the analysis of the physical properties, such as particle size, water retention and three phases of the major horticultural substrates. Easily available water(EAW), the water contents between 1kPa and 5kPa water potental, was highest in peatmoss with 39%, and perlite 34.0%, vermiculite 16.9%, but the values of osmunda and bark were lower than 4.8%. Water buffering capacity(WBC), the water content between 5kPa and 10kPa, was 6.1% in peatmoss and 2.3% in vermiculite but it was lower than 1.0% in other substrates. To adjust the suitable range of water potential at crossing point of water and air curves to 1.5~2.5kPa, more finer materials were needed in osmunda and bark, and more coarser materials must be added to peatmoss, perlite and vermiculite. Water potentials of substrates in saturated pot condition were equivalent to 2.2kPa in peatmoss and others were ranged in 1.0kPa to 4.3kPa of water potential in pressure chamber.

  • PDF