• Title/Summary/Keyword: PARSIVEL

Search Result 17, Processing Time 0.021 seconds

Development of PARSIVEL Analysis Tool for Verification of Electromagnetic Wave Precipitation Gauge, Small Radar and Various Rain Gauge System (전파강수계, 소형레이더 및 각종 강우량계 비교검증을 위한 PARSIVEL 분석 도구 개발)

  • Jang, Bong-Joo;Lee, Chan-Joo;Kim, Hyunjung;Kim, Dong-Gu;Lim, Sanghun;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.185-185
    • /
    • 2018
  • 광학우적계(PARSIVEL)는 강수 입자의 정확한 직경 및 분포 분석에 용이한 이유로 정밀 기상관측과 레이더 및 우량계 검보정을 위해 널리 사용되고 있다. 하지만 PARSIVEL S/W의 경우, 관측 순간의 각종 변수 및 분석 결과를 이해하기에 용이하나 강우 이벤트 전체를 분석하기 위해서는 별도의 후처리가 요구되는 번거로움이 있다. 본 연구에서는 소형레이더 및 전파강수계의 비교검증 효율성 향상을 위해 그림 1과 같이 PARSIVEL의 자료구조 및 포맷을 분석하여, 즉각적으로 원하는 강우 이벤트에 대해 다양한 분석도구를 적용할 수 있는 S/W를 개발하였다. 그림 2로부터 개발된 S/W로부터의 분석결과를 나타내었으며, 다양한 실험을 통해 제안한 S/W를 이용함으로써 각종 강우량계 비교검증 시 강수분석을 용이하게 함을 확인하였다.

  • PDF

A Study on a Model of Rainfall Drop-Size Distribution over Daegwanryeong Mountainous Area Using PARSIVEL Observations (PARSIVEL 측정 자료를 활용한 대관령 산악지역 강수입자분포 모형 연구)

  • Park, Rae-Seol;Jang, Min;Oh, Sung Nam;Hong, Yun-Ki
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.518-528
    • /
    • 2014
  • In this study, a model of rainfall drop-size distribution was modified using PARSIVEL-retrieved rainfall drop-size distribution over Daegwanryeong mountainous area. A prototype model (Modified ${\Gamma}$ distribution model) applicable for this area was decided through the comparative analysis between results from models proposed by preceding research and PARSIVEL-retrieved data over Daegwanryeong mountainous area. In order to apply the prototype model for Daegwanryeong region, the parameters (${\alpha}$, A, B) were made via sensitivity experiments and models of the rainfall drop-size distributions for five cases of rainfall rate were proposed. Results from the proposed five models showed high correlations with PARSIVEL-retrieved data ($R^2=0.975$). In order to suggest a generalized form of rainfall drop-size distribution, interaction equations between rainfall rates and parameters (${\alpha}$, A, B) were investigated. The generalized model of the rainfall drop-size distribution was highly correlated with PARSIVEL-retrieved data ($R^2=0.953$), which means that the proposed model from this study was effective for simulating the rainfall drop-size distribution over Daegwanryeong region. However, the proposed model was optimized for rainfall drop-size distribution over Daegwanryeong region. Therefore, broad observations of other regions are necessary in order to develop the representative model of the Korean peninsula.

Method for Analysis on Optimization of Averaging Interval of Rainfall Rate Measured by Tipping-Bucket Rain Gauges

  • Nam, Kyung-Yeub;Chang, Ki-Ho;Kim, Kyung-Eak;Oh, Sung-Nam;Choi, Young-Jean;Kim, Kyung-Sik;Lee, Dong-In;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Rainfall data from three different types of rain gauge system have been collected for the summertime rain event at Mokpo in the Korean peninsula. The rain gauge system considered in this paper is composed of three tipping-bucket rain gauges with 0.1, 0.2, and 0.5 mm measuring resolutions, the Optical Rain Gauge (ORG), and the PARSIVEL (PARticle SIze and VELocity). The PARSIVEL rainfall rate has been considered as the reference for comparison since it gave good resolution and performance on this event. Comparison with the PARSIVEL rainfall rate gives the results that the error and temporal variation of rainfall rate are simultaneously reduced with increasing the averaging interval of rainfall rate or decreasing the size of tipping bucket. This suggests that the estimated rainfall rate must be optimized, differently for the type of tipping-bucket rain gages, by minimizing the averaging interval of rainfall rate under the condition satisfying the given performance of rainfall rate.

Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation (강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석)

  • Cha, Joo-Wan;Chang, Ki-Ho;Oh, Sung-Nam;Choi, Young-Jean;Jeong, Jin-Yim;Jung, Jae-Won;Yang, Ha-Young;Bae, Jin-Young;Kang, Sun-Young
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.

Synoptic Meteorological Classification and Analysis of Precipitation Characteristics in Gimhae Region Using 2DVD and Parsivel (2DVD와 Parsivel 이용한 김해지역 강수사례일의 종관기상학적 분류 및 강수 특성 분석)

  • Cheon, Eun-Ji;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.289-302
    • /
    • 2017
  • During the research period, error analysis of the amount of daily precipitation was performed with data obtained from 2DVD, Parsivel, and AWS, and from the results, 79 days were selected as research days. According to the results of a synoptic meteorological analysis, these days were classified into 'LP type, CF type, HE type, and TY type'. The dates showing the maximum daily precipitation amount and precipitation intensity were 'HE type and CF type', which were found to be attributed to atmospheric instability causing strong ascending flow, and leading to strong precipitation events. Of the 79 days, most days were found to be of the LP type. On July 27, 2011 the daily precipitation amount in the Korean Peninsula reached over 80 mm (HE type). The leading edge of the Northern Pacific high pressure was located over the Korean Peninsula with unstable atmospheric conditions and inflow of air with high temperature and high humidity caused ascending flow, 120 mm/h with an average precipitation intensity of over 9.57 mm/h. Considering these characteristics, precipitation in these sample dates could be classified into the convective rain type. The results of a precipitation scale distribution analysis showed that most precipitation were between 0.4-5.0 mm, and 'Rain' size precipitation was observed in most areas. On July 9, 2011, the daily precipitation amount was recorded to be over 80 mm (CF type) at the rainy season front (Jangma front) spreading across the middle Korean Peninsular. Inflow of air with high temperature and high humidity created unstable atmospheric conditions under which strong ascending air currents formed and led to convective rain type precipitation.

Analysis of Summer Rainfall Case over Southern Coast Using MRR and PARSIVEL Disdrometer Measurements in 2012 (연직강우레이더와 광학우적계 관측자료를 이용한 2012년 여름철 남해안 강우사례 분석)

  • Moon, Ji-Young;Kim, Dong-Kyun;Kim, Yeon-Hee;Ha, Jong-Chul;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.265-273
    • /
    • 2013
  • To investigate properties of cloud and rainfall occurred at Boseong on 10 July 2012, Raindrop Size distributions (RSDs) and other parameters were analyzed using observation data collected by Micro Rain Radar (MRR) and PARticle SIze and VELocity (PARSIVEL) disdrometer located in the National center for intensive observation of severe weather at Boseong in the southwest of the Korean peninsula. In addition, time series of RSD parameters, relationship between reflectivity-rain rate, and vertical variation of rain rates-fall velocities below melting layer were examined. As a result, good agreements were found in the reflectivity-rain rate time series as well as their power relationships between MRR and PARSIVEL disdrometer. The rain rate was proportional to reflectivity, mean diameter, and inversely proportional to shape (${\mu}$), slope (${\Lambda}$), intercept ($N_0$) parameter of RSD. In comparison of the RSD, as rain rate was increased, the slope of RSD became less steep and the mean diameter became larger. Also, it was verified that reflectivities are classified in three categories (Category 1: Z (reflectivity) > 40 dBZ, Category 2: 30 dBZ < Z < 40 dBZ, Category 3: Z < 30 dBZ). As reflectivity was increased, rain rate was intensified and larger raindrops were existed, while reflectivity was decreased, shape (${\mu}$), slope (${\Lambda}$), intercept ($N_0$) parameter of RSD were increased. We expected that these results will lead to better understanding of microphysical process in convective rainfall system occurred during short-term period over Korean peninsula.

Measurements of Cloud Raindrop Particles Using the Ground Optical Instruments and Small Doppler Radar at Daegwallyeong Mountain Site

  • Oh, Sung-Nam;Jung, Jae-Won
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.293-306
    • /
    • 2013
  • Hydrometeor type and Drop Size Distribution (DSD) in cloud are the fundamental properties that may help explain the rain formation processes and determine the parameters of radar meteorology. This study presents a preliminary analysis of hydrometeor types and DSD data of cloud measured with a PARSIVEL (PARticle SIze and VELocity) optical disdrometer at the site of Cloud Physics Observation System (CPOS, $37^{\circ}41^{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m from sea level) in Daegwallyeong mountainside of Korea. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using the physical data such as DSD, terminal velocity, and rain intensity which were measured by a Micro-Rain Radar (MRR) and a PARSIVEL optical disdrometer. The analysis period started in three cases: on rainy days with light rain (15.5 mm), moderate rain (76 mm), and heavy rain (121 mm), from March to November 2007, respectively.

Cloud Physics Observation System (CPOS) and Validation of Its Products (구름물리 관측시스템 및 산출물 검정)

  • Chang, Ki-Ho;Oh, Sung-Nam;Jeong, Ki-Deok;Yang, Ha-Young;Lee, Myoung-Joo;Jeong, Jin-Yim;Cho, Yohan;Kim, Hyo-Kyung;Park, Gyun-Myeong;Yum, Seong-Soo;Cha, Joo-Wan
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.101-108
    • /
    • 2007
  • To observe and analyze the cloud and fog characteristics, the METeorological Research Institute (METRI) has established the Cloud Physics Observation System (CPOS) by implementing the cloud observation instruments: Forward Scattering Spectrometer Probe (FSSP), PARticle SIze and VELocity (PARSIVEL), Microwave Radiometer (MWR), Micro Rain Radar (MRR), and 3D-AWS at the Daegwallyeong Enhanced Mountain Weather Observation Center. The cloud-related products of CPOS and the validation status for the size distribution of FSSP, the precipitable water of MWR, and the rainfall rate of MRR and PARSIVEL are described.

Quality Control of Pluvio Snowfall Data Using Parsivel (광학우적계를 이용한 무게식 우량계 적설 자료 품질 관리)

  • Ro, Yonghun;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.80-80
    • /
    • 2018
  • 겨울철 대설 현상에 따른 도로 결빙과 항공기 운항 지연, 비닐하우스 및 가건물 붕괴와 같은 피해가 증가함에 따라 대처방안을 마련하는 일이 중요시 되고 있다. 이를 위해 정확한 적설 정보가 근본적으로 필요하지만, 문제는 적설량을 정량적으로 관측하는 일이 간단하지 않다는 점이다. 최근에는 무게식 우량계를 이용한 적설 관측이 수행되고 있지만, 강설량이 많을 경우 우량계가 눈에 덮이는 캐핑(capping) 현상으로 인해 제대로 관측하기 어려운 문제가 있다. 본 연구에서는 무게식 우량계의 이러한 한계를 보완하고 자료의 활용성을 높이기 위해 광학우적계(Parsivel)로 관측된 강설입자정보를 이용하여 적설량을 보정하는 방법을 제안하였다. 무게식 우량계 자료는 대관령 구름물리선도센터에 설치되어 있는 플루비오(Pluvio)의 적설 관측 자료를 이용하였다. 먼저, 관측된 플루비오 자료에서 단위 시간동안의 신적설을 산정한 후 과도한 관측값과 같은 노이즈를 제거하였다. 또한 플루비오와 동일 기간에 관측된 광학우적계 자료에 대해 강설 입자가 $10/m^3$ 초과로 나타나는 사상을 강수 기간으로 결정하고 두 자료가 모두 '0'인 경우 무강수로 나타냈다. 그 결과 강수 입자가 관측된 적설 기간에 플루비오가 우수하게 강설 사상을 관측하고 있음을 확인하였고, 부적합한 자료를 보정할 수 있었다. 이러한 방법으로 적설 자료를 개선할 경우 향후 레이더를 이용한 공간적 강설 추정의 정확도를 크게 개선할 수 있을 것으로 판단된다.

  • PDF

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.