• Title/Summary/Keyword: P450 2J2

Search Result 85, Processing Time 0.025 seconds

Effects of Catechin on Mixed Function Oxidase System and Oxidative Damage in Rat Liver Exposed to Microwave (전자파 조사 흰쥐 간조직의 Mixed Function Oxidase System과 산화적 손상에 미치는 Catechin의 영향)

  • 김미지;이준하;이순재
    • Journal of Nutrition and Health
    • /
    • v.34 no.3
    • /
    • pp.299-305
    • /
    • 2001
  • The purpose of this study was to investigate the effects of catechin on the changes of microsomal mixed function oxidase(MFO) system and oxidative damage in rat liver exposed to microwave. Sprague-Dawley male rats weighing 200$\pm$10g body weight were randomly assigned to one normal and microwave exposed groups: microwave exposed groups were divided three groups: catechin free diet(MW) group, 0.25% catechin(MW+0.25C) group and 0.5% catechin(MW+0.5C) group to the levels of dietary catechin supplementation. The rats were irradiated with microwave at frequency 2.45GHz for 15 min and then the changes pattern of mixed function oxidase system and oxidative damage were investigated for 16 days. The activity of XOD in MW group was increased from 4 day to 8 days after irradiation, compared to normal group and decreased to the level of normal group 16 days. But catechin supplementation group were maintained to the normal level. The contents of cytochrome P(sub)450 and NADPH cytochrome P(sub)450 reductase activities in liver of MW group was increased from 4 day to 8 day after irradiation, compared to normal group and decreased to the level of normal group at 16 day. But catechin supplementation group were recovered to the normal level. The contents of superoxide radical in liver of MW group was increased 1.28, 1.25, 1.17 fold of normal group at 4,6 and 8 days days after irradiation. respectively, but catechin supplementation group were maintained the normal level. The contents of lipifuscin in liver have a same tendency in superoxide radical contents. These result suggested that the supplementation of catechin have control the mixed function oxidase system and oxidative damage and that may help to recover tissues from microwave damage. (Korean J Nutrition 34(3) : 299~305, 2001)

  • PDF

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

Evaluation of Relative Bioavailability of 25-Hydroxycholecalciferol to Cholecalciferol for Broiler Chickens

  • Han, J.C.;Chen, G.H.;Wang, J.G.;Zhang, J.L.;Qu, H.X.;Zhang, C.M.;Yan, Y.F.;Cheng, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1145-1151
    • /
    • 2016
  • This study was conducted to evaluate the relative bioavailability (RBV) of 25-hydroxycholecalciferol (25-OH-$D_3$) to cholecalciferol (vitamin $D_3$) in 1- to 21-d-old broiler chickens fed with calcium (Ca)- and phosphorus (P)-deficient diets. On the day of hatch, 450 female Ross 308 broiler chickens were assigned to nine treatments, with five replicates of ten birds each. The basal diet contained 0.50% Ca and 0.25% non-phytate phosphorus (NPP) and was not supplemented with vitamin D. Vitamin $D_3$ was fed at 0, 2.5, 5.0, 10.0, and $20.0{\mu}g/kg$, and 25-OH-$D_3$ was fed at 1.25, 2.5, 5.0, and $10.0{\mu}g/kg$. The RBV of 25-OH-$D_3$ was determined using vitamin $D_3$ as the standard source by the slope ratio method. Vitamin $D_3$ and 25-OH-$D_3$ intake was used as the independent variable for regression analysis. The linear relationships between the level of vitamin $D_3$ or 25-OH-$D_3$ and body weight gain (BWG) and the weight, length, ash weight, and the percentage of ash, Ca, and P in femur, tibia, and metatarsus of broiler chickens were observed. Using BWG as the criterion, the RBV value of 25-OH-$D_3$ to vitamin $D_3$ was 1.85. Using the mineralization of the femur, tibia, and metatarsus as criteria, the RBV of 25-OH-$D_3$ to vitamin $D_3$ ranged from 1.82 to 2.45, 1.86 to 2.52, and 1.65 to 2.05, respectively. These data indicate that 25-OH-$D_3$ is approximately 2.03 times as active as vitamin $D_3$ in promoting growth performance and bone mineralization in broiler chicken diets.

Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginseng genes: PgDDS, CYP716A47, and CYP716A53v2

  • Gwak, Yu Shin;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.261-271
    • /
    • 2019
  • Background: Protopanaxatriol (PPT) is an aglycone of ginsenosides, which has high medicinal values. Production of PPT from natural ginseng plants requires artificial deglycosylation procedures of ginsenosides via enzymatic or physicochemical treatments. Metabolic engineering could be an efficient technology for production of ginsenoside sapogenin. For PPT biosynthesis in Panax ginseng, damarenediol-II synthase (PgDDS) and two cytochrome P450 enzymes (CYP716A47 and CYP716A53v2) are essentially required. Methods: Transgenic tobacco co-overexpressing P. ginseng PgDDS, CYP716A47, and CYP716A53v2 was constructed via Agrobacterium-mediated transformation. Results: Expression of the three introduced genes in transgenic tobacco lines was confirmed by Reverse transcription-polymerase chain reaction (RT-PCR). Analysis of liquid chromatography showed three new peaks, dammarenediol-II (DD), protopanaxadiol (PPD), and PPT, in leaves of transgenic tobacco. Transgenic tobacco (line 6) contained $2.8{\mu}g/g$ dry weight (DW), $7.3{\mu}g/g$ DW, and $11.6{\mu}g/g$ DW of PPT, PPD, and DD in leaves, respectively. Production of PPT was achieved via cell suspension culture and was highly affected by auxin treatment. The content of PPT in cell suspension was increased 37.25-fold compared with that of leaves of the transgenic tobacco. Transgenic tobacco was not able to set seeds because of microspore degeneration in anthers. Transmission electron microscopy analysis revealed that cells of phloem tissue situated in the center of the anther showed an abnormally condensed nuclei and degenerated mitochondria. Conclusion: We successfully achieved the production of PPT in transgenic tobacco. The possible factors deriving male sterility in transgenic tobacco are discussed.

Fermented ginseng, GBCK25, ameliorates steatosis and inflammation in nonalcoholic steatohepatitis model

  • Choi, Naeun;Kim, Jong Won;Jeong, Hyeneui;Shin, Dong Gue;Seo, Jeong Hun;Kim, Jong Hoon;Lim, Chae Woong;Han, Kang Min;Kim, Bumseok
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.196-208
    • /
    • 2019
  • Background: Nonalcoholic steatohepatitis (NASH) is one of the chronic inflammatory liver diseases and a leading cause of advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The main purpose of this study was to clarify the effects of GBCK25 fermented by Saccharomyces servazzii GB-07 and pectinase, on NASH severity in mice. Methods: Six-wk-old male mice were fed either a normal diet (ND) or a Western diet (WD) for 12 wks to induce NASH. Each group was orally administered with vehicle or GBCK25 once daily at a dose of 10 mg/kg, 20 mg/kg, 100 mg/kg, 200 mg/kg, or 400 mg/kg during that time. The effects of GBCK25 on cellular damage and inflammation were determined by in vitro experiments. Results: Histopathologic analysis and hepatic/serum biochemical levels revealed that WD-fed mice showed severe steatosis and liver injury compared to ND-fed mice. Such lesions were significantly decreased in the livers of WD-fed mice with GBCK25 administration. Consistently, mRNA expression levels of NASH-related inflammatory-, fibrogenic-, and lipid metabolism-related genes were decreased in the livers of WD-fed mice administered with GBCK25 compared to WD-fed mice. Western blot analysis revealed decreased protein levels of cytochrome P450 2E1 (CYP2E1) with concomitantly reduced activation of c-Jun N-terminal kinase (JNK) in the livers of WD-fed mice administered with GBCK25. Also, decreased cellular damage and inflammation were observed in alpha mouse liver 12 (AML12) cells and RAW264.7 cells, respectively. Conclusion: Administration of GBCK25 ameliorates NASH severity through the modulation of CYP2E1 and its associated JNK-mediated cellular damage. GBCK25 could be a potentially effective prophylactic strategy to prevent metabolic diseases including NASH.

A study on the PZT thin films for Non-volatile Memory (비휘발성 메모리용 강유전체 박막에 관한 연구)

  • Lee, B.S.;Park, J.K.;Kim, Y.W.;Park, K.S.;Kim, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1562-1564
    • /
    • 2003
  • In this study, PZT thin films were fabricated using sol-gel processing onto Si/$SiO_2$/Ti/Pt substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C,\;650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Min Ju Kim;Joon Hurh;Ha-Rim Kim;Sang-Wang Lee;Hong-Sig Sin;Sang-Jun Kim;Eun-mi Noh;Boung-Jun Oh;Seon-Young Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.

Safety of middle meningeal artery embolization for treatment of subdural hematoma: A nationwide propensity score matched analysis

  • Carson P. McCann;Michael G. Brandel;Arvin R. Wali;Jeffrey A. Steinberg;J. Scott Pannell;David R. Santiago-Dieppa;Alexander A. Khalessi
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.25 no.4
    • /
    • pp.380-389
    • /
    • 2023
  • Objective: Middle meningeal artery embolization (MMAe) has burgeoned as a treatment for chronic subdural hematoma (cSDH). This study evaluates the safety and short-term outcomes of MMAe patients relative to traditional treatment approaches. Methods: In this retrospective large database study, adult patients in the National Inpatient Sample from 2012-2019 with a diagnosis of cSDH were identified. Cost of admission, length of stay (LOS), discharge disposition, and complications were analyzed. Propensity score matching (PSM) was utilized. Results: A total of 123,350 patients with cSDH were identified: 63,450 without intervention, 59,435 surgery only, 295 MMAe only, and 170 surgery plus MMAe. On PSM analysis, MMAe did not increase the risk of inpatient complications or prolong the length of stay compared to conservative management (p>0.05); MMAe had higher cost ($31,170 vs. $10,768, p<0.001) than conservative management, and a lower rate of nonroutine discharge (53.8% vs. 64.3%, p=0.024). Compared to surgery, MMAe had shorter LOS (5 vs. 7 days, p<0.001), and lower rates of neurological complications (2.7% vs. 7.1%, p=0.029) and nonroutine discharge (53.8% vs. 71.7%, p<0.001). There was no significant difference in cost (p>0.05). Conclusions: MMAe had similar LOS and decreased odds of adverse discharge with a modest cost increase compared to conservative management. There was no difference in inpatient complications. Compared to surgery, MMAe treatment was associated with decreased LOS and rates of neurological complications and nonroutine discharge. This nationwide analysis supports the safety of MMAe to treat cSDH.

Structure Analysis of pmcABCDEFT Gene Cluster for Degradation of Protocatechuate from Comamonas sp. Strain DJ-12 (Comamonas sp. Strain DJ-12로부터 Protocatechuate의 분해에 관여하는 pmcABCDEFT 유전자군의 구조 분석)

  • Kang Cheol-Hee;Lee Sang-Mhan;Lee Kyoung;Lee Dong-Hun;Kim Chi-Kyung
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2005
  • Comamonas sp. strain DJ-12 is a bacterial isolate capable of degrading of 4-chlorobiphenyl (4CB) as a carbon and energy source. The degradation pathway was characterized as being conducted by consecutive reactions of the meta-degradation of 4CB, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-degradation of protocatechuate to product TCA metabolites. The 6.8 kb fragment from the chromosomal DNA of Comamonas sp. strain DJ-12 included the genes encoding for the meta-degradation of PCA; the genes of protocatechuate 4,5-dioxygenase alpha and beta subunits (pmcA and pmcB), 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (pmcC), 2-pyrone-4,6-dicarboxylate hydrolase (pmcD), 4-oxalomesaconate (OMA) hydratase(pmcE), 4-oxalocitramalate (OCM) aldolase (pmcF), and transporter gene (pmcT). They were organized in the order of pmcT-pmcE-pmcF-pmcD-pmcA-pmcB-pmcC. The amino acid sequences deduced from the nucleotide sequences of pmcABCDEFT genes from Comamonas sp. strain DJ-12 exhibited 94 to $98\%$ homologies with those of Comamonas testosteroni BR6020 and Pseudomonas ochraceae NGJ1, but only 52 to $74\%$ with homologies Sphingomonas paucimobilis SYK-6, Sphingomonas sp. LB126, and Arthrobacter keyseri 12B.

The Effects of Feeding Feed Additives Containing Microorganisms on Characteristics of Excreta in Finishing Pigs (비육돈에 미생물제제 급여시 분뇨 특성에 미치는 효과)

  • Kwag, J.H.;Choi, D.Y.;Park, Ch.H.;Kim, J.H.;Jeong, K.H.;Yang, Ch.B.;Yoo, Y.H.;Chen, H.S.;La, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2007
  • Study for the effect of three different microbial feed additives(henceforth MA-A, MA-B, and MA-C) on feed coversion rate, and physical and chemical characteristics of swine finisher was conducted. MA-B had higher number of Lactobacillus spp. and yeast, compared to any other. The amylase activity of MA-B was also higher than any other. The daily feed intake rates of pigs fed control, MA-A, MA-B and MA-C were 3.15, 3.14, 3.31 and 3.42 kg, respectively. MA-C had the highest weight gain. However, there was no significant difference between treatments. The weights of feces daily excreted by pigs fed control, MA-A, MA-B, and MA-C were 2.14, 2.02, 2.18, and 2.23 kg/day, respectively. The volume of urine daily excreted by pigs fed control, MA-A, MA-B, and MA-C were 3.14, 3.26, 3.27, and $3.41\;{\ell}/day$, respectively. Water content, T-N, $P_{2}O_{5}$, and $K_{2}O$ in swine manure were not significantly different between treatments. The BOD were between 42,576 and $67,450\;mg/{\ell}$ for feces and were between 5,882.5 and $8,657.5\;mg/{\ell}$ for urine, respectively. The SS were between 138,000 and $180,000\;mg/{\ell}$ for feces and were between 875.0 and $1450.0mg/{\ell}$ for urine, respectively.

  • PDF