• Title/Summary/Keyword: P2 receptors

Search Result 421, Processing Time 0.027 seconds

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

The Basis of Different Sensitivities of Ovarian Cancer Cells to the Recombinant Adenoviral Vector System Containing a Tumor-Specific L-plastin Promoter and E. coli Cytosine Deaminase Gene as a Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2009
  • We have reported previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase gene (CD) is driven by the tumor-specific L-plastin promoter. AdLPCD vector had been evaluated for its efficacy of chemosensitization of ovarian cancer cells to 5-FC. In spite of the fact that ovarian cancer cells, i.e., OVCAR-3 and SK-OV-3, are capable for adenoviral transduction judged by LacZ reporter gene analysis, two cell lines demonstrated quite different sensitivities toward AdLPCD/5-FC system. In OVCAR-3 cells, infection of AdLPCD followed by exposure to 5-FC resulted in the suppression of cell growth with statistical significance. On the other hand, SK-OV-3 cells were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The object of study was to investigate factors that would determine the sensitivity to AdLPCD/5-FC. We evaluated conversion rate of 5-FC to 5-FU after infection of AdLPCD by HPLC analysis, $IC_{50}$ of 5-FU, the expression level of integrin receptors i.e., ${\alpha}v{\beta}3$ and ${\alpha}v{\beta}5$, and status of p53 in OVCAR-3 and SK-OV-3 cells. The results indicated that OVCAR-3 cells have few favorable features compared with SK-OV-3 cells to be more effective to the AdLPCD/5-FC strategy; higher level of ${\alpha}v{\beta}5$ integrin, higher rate of conversion of 5-FC into 5-FC, and lower $IC_{50}$ of 5-FU. The results suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

The Effect of ATP-sensitive Potassium Channel on R-PIA Induced Mechanical Antiallodynia in a Peripheral Neuropathic Rat (신경병증 통증 모델의 백서에서 R-PIA의 기계적 항이질통 효과와 ATP-감수성 칼륨 통로와의 연관성에 대한 연구)

  • Min, Hong Gi;Seong, Seung Hye;Jung, Sung Mun;Shin, Jin Woo;Gwak, Mi Jung;Leem, Jeong Gill;Lee, Cheong
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • Background: Nerve ligation injury may produce mechanical allodynia, but this can be reversed after an intrathecal administration of adenosine analogues. In many animal and human studies, ATP-sensitive potassium channel blockers have been known to reverse the antinociceptive effect of various drugs. This study was performed to evaluate the mechanical antiallodynic effects of spinal R-PIA (Adenosine A1 receptor agonist) and the reversal of these effects due to pretreatment with glibenclamide (ATP-sensitive potassium channel blocker). Thus, the relationship between the antiallodynic effects of R-PIA and ATP-sensitive potassium channel were investigated in a neuropathic model. Methods: Male Sprague Dawley rats were prepared by tightly ligating the left lumbar 5th and 6th spinal nerves and implantation of a chronic lumbar intrathecal catheter for drug administration. The mechanical allodynia was measured by applying von Frey filaments ipsilateral to the lesioned hind paw. And the thresholds for paw withdrawal assessed. In study 1, either R-PIA (0.5, 1 and $2{\mu}g$) or saline were administered intrathecally for the examination of the antiallodynic effect of R-PIA. In study 2, glibenclamide (2, 5, 10 and 20 nM) was administered intrathecally 5 min prior to an R-PIA injection for investigation of the reversal of the antiallodynic effects of R-PIA. Results: The antiallodynic effect of R-PIA was produced in a dose dependent manner. In study 1, the paw withdrawal threshold was significantly increased with $2{\mu}g$ R-PIA (P < 0.05). In study 2, the paw withdrawal threshold with $2{\mu}g$ R-PIA was significantly decreased almost dose dependently by intrathecal pretreatment of 5, 10 and 20 nM glibenclamide (P < 0.05). Conclusions: These results demonstrated that an intrathecal injection of ATP-sensitive potassium channel blockers prior to an intrathecal injection of adenosine A1 receptors agonist had an antagonistic effect on R-PIA induced antiallodynia. The results suggest that the mechanism of mechanical antiallodynia, as induced by an intrathecal injection of R-PIA, may involve the ATP-sensitive potassium channel at both the spinal and supraspinal level in a rat nerve ligation injury model.

Nonadrenergic Noncholinergic Nerve-mediated Contraction of the Longitudinal Muscle of Rat Ileum (랫드 회장 종주근의 비아드레날린 비콜린성 신경에 의한 수축반응)

  • Kim, Tae-wan;La, Jun-ho;Sung, Tae-sik;Kang, Jung-woo;Yang, Il-suk;Han, Ho-jae
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.405-414
    • /
    • 2003
  • The purpose of this study was to assess the role of tachykinins (TK) in mediating nonadrenergic noncholinergic (NANC) contractions produced by electrical field stimulation (EFS) in the longitudinal muscle of the rat ileum. In the presence of atropine ($1{\mu}M$), guanethidine ($5{\mu}M$), and L-nitroarginine (L-NNA, $200{\mu}M$), EFS (0.5ms pulse duration, 120 V, 1-20 Hz for 2 min) produced a frequency-dependent slowly-developing tonic contraction with superimposed phasic contractions ('on'-contraction) followed by off slowly-decreasing tonic and superimposed phasic contractions ('off'-contraction) of mucosa-free longitudinal oriented muscle strip. These EFS induced responses were blocked by tetrotoxin. $NK_1$ receptor selective antagonist L-732,138 strongly inhibited the EFS-induced excitatory responses. However $NK_2$ receptor selective antagonist, GR 159897 and $NK_3$ receptor selective antagonist SB 222200 did not significantly inhibited the responses. $NK_1$ receptor selective agonist [$Sar^9$,$Met(O_2)^{11}$] Substance P and $NK_2$ receptor selective agonist [${\beta}-Ala^8$]-neurokinin A (4-10) induced tonic contraction with superimposed phasic contractions of longitudinal oriented muscle strip and almost blocked by selective antagonist L-732,138 and GR 159897, respectively. But $NK_3$ receptor selective agonist senktide did not showed any effect. Nifedipine ($1{\mu}M$) abolished the contraction produced either by EFS or by the TK receptor agonists [$Sar^9$,$Met(O_2)^{11}$] Substance P or [${\beta}-Ala^8$]-neurokinin A (4-10). It is concluded that, in the longitudinal muscle of rat ileum, both $NK_1$ and $NK_2$ receptors modulated the responses to exogenous tachykinins, whereas $NK_1$ is mainly involved in NANC neuromuscular contraction.

Immunohistochemical Profile of Breast Cancer Patients at a Tertiary Care Hospital in New Delhi, India

  • Doval, Dinesh Chandra;Sharma, Anila;Sinha, Rupal;Kumar, Kapil;Dewan, Ajay Kumar;Chaturvedi, Harit;Batra, Ullas;Talwar, Vineet;Gupta, Sunil Kumar;Singh, Shailendra;Bhole, Vidula;Mehta, Anurag
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4959-4964
    • /
    • 2015
  • Background: To assess the immunohistochemical expression of estrogen receptor (ER), progesterone receptor (PgR) and human epidermal growth factor receptor-2 (HER2) neu receptor in breast cancer and their associations with various clinicopathological characteristics. Materials and Methods: This is a retrospective analysis of women who presented with primary, unilateral breast cancer in the Department of Medical Oncology at Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India during the period from January 2008 to December 2011. Data were retrieved from the medical records of the hospital including both early and locally advanced cancer cases. ER, PgR and HER2neu expression in these patients was assessed and triple negative patients were identified. Associations of triple negative and non-triple negative groups with clinicopathological characteristics were also evaluated. Results: A total of 1,284 women (mean age 52.1 years, 41.9% premenopausal) were included in the analysis. Hormone receptor positivity (ER and/or PgR) was seen in 63.4% patients, while 23.8% of tumors were triple negative. Only 23.0% were HER2 positive. Around 10.0% of tumors were both ER and HER2 positive. ER and PgR positivity was significantly associated with negative HER2 status (p-value <0.0001). Younger age, premenopausal status, higher tumor grade, lymph node negativity, advanced cancer stage, and type of tumor were strongly associated with triple negativity. Significantly, a smaller proportion of women had ductal carcinoma in situ in the triple negative group compared with the non-triple negative group (35.6% versus 60.8%, p-value<0.01). Conclusions: The present analysis is one of the largest studies from India. The majority of the Indian breast cancer patients seen in our hospital present with ER and PgR positive tumors. The triple negative patients tended to be younger, premenopausal, and were associated with higher tumor grades, negative lymph nodes status and lower frequency of ductal carcinoma in situ.

Prolactin Response to Cimetidine in the Schizophrenics - In Unmedicated Male Positive and Negative Patients - (정신분열증 환자에서 Cimetidine에 의한 Prolactin 분비 반응 - 양성 및 음성 아형 남자 환자에서 -)

  • Jin, Hyuk Hee;Kwon, Young Joon;Jeong, Hee Yeon;Han, Sun Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.121-126
    • /
    • 1996
  • Objects : There is considerable interest in the role of serotonin(5-HT) in the pathophysiology of schizophrenia. Cimetidine, $H_2$ antagonist, produces transient increase in serum prolactin(PRL) levels by indirect serotonergic mechanism in man following intravenous administration. Therefore the authors investigated the effects of cimetidine on serum PRL levels of male unmedicated schizophrenics. Method : Baseline serum prolactin level and psychopathology were measured at 9:00 AM. in the two groups(12 positive schizophrenics, 7 negative schizophrenics) and $T_{30}$ levels were measured 30 minutes after intravenous injection of cimetidine (ie, 9:30 AM) Results: 1) Baseline prolactin levels were not different in the three groups. 2) Prolactin levels of 30 minutes after intravenous injection of cimetidine($T_{30}$) compared with baseline prolactin levels were increased all in the three groups. 3) Degrees of interval change from baseline to $T_{30}$ were significantly different between normal control and negative schizophrenics(p<0.05). Conclusion : The prolactin response to cimetidine was significantly blunted in negative male schizophrenics than normal control. These data are consistent with the hypothesis of an abnormality of serotonergic activity, including down-regulation $5-HT_2$ receptors, in male negative schizophrenics.

  • PDF

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

CpG Island Methylation Profile of Estrogen Receptor Alpha in Iranian Females with Triple Negative or Non-triple Negative Breast Cancer: New Marker of Poor Prognosis

  • Ramezani, Fatemeh;Salami, Siamak;Omrani, Mir Davood;Maleki, Davood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.451-457
    • /
    • 2012
  • One decade early onset of the breast cancer in Iranian females was reported but the basis of the observed difference has remained unclear and difference in gene silencing by epigenetic processes is suggested. Hence, this study was sought to map the methylation status of estrogen receptor (ER) gene CpG islands and its impact on clinicopathological factors of triple negative and non-triple negative ductal cell carcinoma of the breast in Iranian females. Surgically resected formalin-fixed paraffin-embedded breast tissues from sixty Iranian women with confirmed invasive ductal carcinoma were assessed by methylation-specific PCR using primer sets encompassing some of the 29 CpGs across the ER gene CpG island. The estrogen and progesterone receptors, Her-$2^+$ overexpression, and nuclear accumulation of P53 were examined using immunohistochemistry (IHC). Methylated ER3, ER4, and ER5 were found in 41.7, 11.3, and 43.3% of the samples, respectively. Significantly higher methylation of ER4 was found in the tumors with nuclear accumulation of P53, and significantly higher methylation of ER5 was found in patients with lymph node involvement and tumor with bigger size or higher grades. Furthermore, significantly higher rate of ER5 methylation was found in patients with Her-$2^+$ tumors and in postmenopausal patients with $ER^-$, $PgR^-$, or $ER^-/PgR^-$ tumors. However, no significant difference in ERs methylation status was found between triple negative and non-triple negative tumors in pre- and postmenopausal patients. Findings revealed that aberrant hypermethylation of the ER-alpha gene frequently occurs in Iranian women with invasive ductal cell carcinoma of the breast. However, methylation of different CpG islands produced a diverse impact on the prognosis of breast cancer, and ER5 was found to be the most frequently methylated region in the Iranian women, and could serve as a marker of poor prognosis.

Roles of Prostatic Acid Phosphatase in Prostate Cancer (Prostatic acid phosphatase의 전립선 암에서의 역할)

  • Kong, Hoon-Young;Lee, Hak-Jong;Byun, Jong-Hoe
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.893-900
    • /
    • 2011
  • Prostatic acid phosphatase (PAP) is one of the widely used biomarkers in the diagnosis of prostate cancer. It was initially identified in 1935 and is the most abundant phosphatase in the human prostate. PAP is a prostate-specific enzyme that is synthesized in prostate epithelial cells. It belongs to the acid phosphatase group that shows enzymatic activity in acidic conditions. PAP is abundant in prostatic fluid and is thought to have a role in fertilization and oligospermia. It also has a potential role in reducing chronic pain. But one of the most apparent functions of PAP is the dephosphorylation of macromolecules such as HER-2 and PI3P that are involved in the ERK1/2 and MAPK pathways, which in turn leads to inhibition of cell growth and tumorigenesis. Currently, clinical trials using PAP DNA vaccine are underway and FDA-approved immunotherapy using PAP is commercially available. Despite these clinically important aspects, molecular mechanisms underlying PAP regulation are not fully understood. The promoter region of PAP was reported to be regulated by NF-${\kappa}B$, TNF-${\alpha}$, IL-1, androgen and androgen receptors. Here, the features of PAP gene and protein structures together with the function, regulation and roles of PAP in prostate cancer are discussed.

Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression

  • Zhou, Da;Chen, Yuan-Wen;Zhao, Ze-Hua;Yang, Rui-Xu;Xin, Feng-Zhi;Liu, Xiao-Lin;Pan, Qin;Zhou, Huiping;Fan, Jian-Gao
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.2.1-2.12
    • /
    • 2018
  • Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.