• Title/Summary/Keyword: P. fluorescens

Search Result 178, Processing Time 0.033 seconds

Expression of Bacillus thringiensis HD-1 gene in rhizobacteria Pseudomonas fluorescens KR164 (근권 길항세균 Pseudomonas fluorescens KR164에 Bacillus thuringiensis HD-1 유전자의 삽입과 발현)

  • Kim, Yeong-Yil;Rhee, Young-Hwan;Kang, Heun-Soo
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.227-231
    • /
    • 1992
  • The plasmids pSUPBT and pSUPBTR were constructed with a vector pSUP2021 and the BT toxin gene in the plasmid pES 1. The plasmids constructed were introduced into the antagonistic rhizobacteria P. fluorescens KR164 by conjugation and P. fluorescens having pSUPBT and pSUPBTR were named P. fluorescens KR164(pSUPBT)#2, KR164(pSUPBT)#3, KR164(pSUPBTR)#2 and KR164(pSUPBTR)#3, respectively. The BT toxin gene were identified in all transformants by Southern hybridization and the final product of BT toxin gene was identified only in P. fluorescens KR164(pSUPBTR)#3 by SDS-PAGE. This crystal toxin protein were also observed in electron microscopy.

  • PDF

Root Colonization and Quorum Sensing of the Antagonistic Bacterium Pseudomonas fluorescens 2112 involved in the Red-pepper Rhizosphere (생물방제균 Pseudomonas fluorescens 2112의 고추 근권정착능과 Quorum-sensing 기능)

  • Jung, Byung-Kwon;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • Biofilm formation of multifunctional plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens 2112 is necessary for P. fluorescens 2112 to have a positive impact on the rhizosphere of red-pepper. This study investigated whether signal molecules of the quorum sensing AHLs are produced in order to confirm biofilm formative ability. Through the use of Petri dish bioassays a blue circle formed evidence of AHLs. It was confirmed that P. fluorescens 2112 produced six-carbon-chain-long AHLs by TLC bioassay. The bacterial density of P. fluorescens 2112 on the top and bottom of pepper plant roots was estimated as $3{\times}10^5$ and $8{\times}10^3$ CFU/g root, respectively. P. fluorescens 2112 exist more with high-density of $3.5{\times}10^6$ CFU/g soil at a depth of 1 cm but at a low-density of $1.1{\times}10$ CFU/g soil at a depth of 5 cm, from the surface of rhizosphere soil. In addition, biofilm formation of P. fluorescens 2112 on the epidermises and the tips of the red-pepper roots were confirmed visually by SEM. Thus, the production of AHLs by P. fluorescens 2112 brings about quorum sensing signaling and the formation of biofilm on the roots which has a positive effect on economically important crops such as red-pepper by additionally producing a variety of antifungal substances and auxin.

Role of Siderophores in Biocontrol of Fusarium solani and Enhanced Growth Response of Bean by Pseudomonas fluorescens GL20

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 1997
  • Plant growth-promoting Psudomonas fluorescens GL20 was isolated from a ginseng rhizosphere on chrome azurol Sagar. P. fluorescens GL20 produced a large amount of hydoxamate siderophore in an iron-deficient medium. The siderophore showed significantly high specific activity of 20.2 unit. Using an in vitro antifungal test, P. fluorescens GL20 considerably suppressed growth of phytopathogenic fungus Fusarium solani, inhibiting spore germination and germ tube elongation. In pot trials of kidney beans with P. fluorescens GL20, disease incidence was remarkably reduced up to $68{\%}$ compared with that of F. solani alone, and plant growth was also increased nearly 1.6 fold as compared to that of the untreated control, promoting elongation and development of the roots. These results indicate that the plant growth-promoting activity of P. fluorescens GL20 can play an important role in biological control of soil-borne plant disease in a rhizosphere, enhancing the growth of plants.

  • PDF

Colonizing Ability of Pseudomonas fluorescens 2112, Among Collections of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens spp. in Pea Rhizosphere

  • Kim, Sang-Dal;Fuente, Leonardo De La;Weller, David M.;Thomashow, Linda S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.763-770
    • /
    • 2012
  • Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 genotypes of 2,4-DAPG producers, by phlD restriction fragment length polymorphism (RFLP). The colonizing ability of P. fluorescens 2112 in pea rhizosphere was equal to the well-known pea colonizers, P. fluorescens Q8r1 (genotype D) and MVP1-4 (genotype P), after 6 cycling cultivations for 18 weeks. Four tested 2,4-DAPG-producing Pseudomonas spp. could colonize with about a 96% dominance ratio against total bacteria in pea rhizosphere. The strain P. fluorescens 2112 was as good a colonizer as other Pseudomonas spp. genotypes in pea plant growth-promoting rhizobacteria.

Selection and Antifungal Activity of Antagonistic Bacterium Pseudomonas sp. 2112 against Red-Pepper Rotting Phytophthora capsici (생물방제균 Pseduomonas fluorescens 2112의 선발과 고추역병균에 대한 항진균성 길항작용)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.334-340
    • /
    • 2000
  • In order to select multifunctional powerful antagonistic biocontrol agent against red-pepper rotting fungi Phytophthora capsici, we isolated an indigenous antagonistic bacterium which produces antifungal substances and siderophores from a local soil of Kyongju, Korea. The isolated strain was identified as Pseudomonas fluorescens biotype F. The antibiotic produced from P. fluorescens 2112 inhibited hyphae growth and the zoospore germination of Phytophthora capsici. The favorable carbon, nitrogen source and salts for the production of antibiotic from P. fluorescens 2112 were glycerol, beef extract and LiCi at 1.0%, 0.5% and 5 mM, respectively. And antagonistic activity of P. fluorescens 2112 was confirmed against P. capsici in vivo.

  • PDF

PCR-based identification of Pseudomonas fluorescens in diseased olive flounder, Paralichthys olivaceus, in Jeju Island, South Korea

  • Han, So-Ri;Han, Ho-Seok;Evensen, Oystein;Kim, Sung-Hyun
    • Journal of fish pathology
    • /
    • v.30 no.1
    • /
    • pp.67-70
    • /
    • 2017
  • Pseudomonas is currently causing increasing mortality in farmed olive flounder in Jeju Island. It was previously reported that P. anguilliseptica is the pathogen causing the mortality. It is not known whether other sub-species are involved or not. In this study, P. fluorescens was identified from diseased olive flounder by a PCR-based diagnosis. Based on genomic sequencing and BLAST analysis, 5 out of 6 samples were closer with P. fluorescens than P. anguilliseptica. Our finding suggests that P. fluorescens may be the dominant species causing the disease in farmed olive flounder in Jeju Island, South Korea.

Isolation and Characterization of Benzene-degrading Bacteria. (Benzene 분해 세균의 분리와 특성연구)

  • 김정현;유재근;이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.379-383
    • /
    • 1988
  • To evaluate the treatability of activated sludge induced by benzene with microorganisms, isolation and characterization of benzene-degrading microorganisms were carried out. Six bacterial isolates from the activated sludge were identified ; Pseudomonas fluorescens, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella oxytoca, Citrobacter freundii and Klebsiella pneumoniae. P. fluorescens degraded 55% of benzene contained in the medium as a sole carbon source, E. cloacae 24%, E. agglomerans 41%, and K. oxytoca 32%. Optimal temperature, pH and benzene concentration for growth of P. fluorescens appeared to be 31$^{\circ}C$, pH 7.0, and 300mg benzene per liter. When the P. fluorescens was dominant in the activated sludge induced by benzene, the indicator protozoa was Aspidisca sp. When concentration of benzene was about 387mg per liter, the growths of Aspidisca sp. and Litonotus sp. were high. Protozoa, Litonotus sp. and Vorticella sp. did not grow over 1600mg of benzene per liter.

  • PDF

Causal Agents of Blossom Blight of Kiwifruit in Korea

  • Lee, Young-Sun;Han, Hyo-Shim;Kim, Gyoung-Hee;Koh, Young-Jin;Hur, Jae-Seoun;Jung, Jae-Sung
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.220-224
    • /
    • 2009
  • The causal agents of bacterial blossom blight in kiwifruit were isolated from flowers displaying symptoms in Korea. The pathogens were characterized by biochemical and physiological tests, and identified on the basis of 16S rDNA and 16S-23S internal transcribed spacer (ITS) sequences. Pathogenicity tests demonstrated that the blossom blight of kiwifruit in Korea is caused by two pathogens, Pseudomonas syringae pv. syringae and P. fluorescens. Carbon source utilization and DNA-DNA hybridization experiments confirmed P. fluorescens as one of the causal agents of blossom blight of kiwifruit. P. syringae pv. syringae and P. fluorescens can be distinguished from each other by the symptoms they produce in flowers. P. syringae pv. syringae primarily affected the stamen, while P. fluorescens caused rotting of all internal tissues of buds or flowers.

Isolation of Siderophore-producing Pseudomonas fluorescens GL7 and Its Biocontrol Activity against Root-rot Disease (Siderophore 생산성 생물방제균 Pseudomonas fluorescens GL7의 선발 및 식물근부병의 방제)

  • 이정목;임호성;장태현;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.427-432
    • /
    • 1999
  • For the development of a multifunctional biocontrol agent, the siderophore-producing strain GL7 was isolated from a rhizosphere on chrome azurol S agar. The GL7 was identified as a strain of Pseudomonas fluorescents on the basis of their reactions to standard physicochemcial tests from Bergey's manual, API diagnostic test, and fatty acid analysis. P. fluorescents GL7 considerably inhibited spore germination and hyphal growth of phytopathogenic fungus Funsarium solani in a dual culture. In pot trials of bean with P. fluorescens GL7, the disease incidence was significantly reduced down to 5% from 70% of incidence in the untreated control. P. fluorescens GL7 also enhanced plant growth to nearly 1.5 times than that of the untreated control, promoting elongation and development of the roots. These results suggest that the plant growth-promoting P. fluorescens GL7 can play an important role in the biological control of soil-borne plant disease in a rhizosphere.

  • PDF

Application of Pulsed Electric Fields with Square Wave Pulse to Milk Inoculated with E. coli, P. fluorescens, and B. stearothermophilus

  • Shin, Jung-Kue;Jung, Kwan-Jae;Pyun, Yu-Ryang;Chun, Myong-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1082-1084
    • /
    • 2007
  • Ultra-high temperature (UHT) processed full fat milk inoculated with Escherichia coli, Pseudomonas fluorescens, and Bacillus stearothermophilus was exposed to 30-60 kV/cm square wave pulsed electric field (PEF) with $1\;{\mu}sec$ pulse width, and $26-210\;{\mu}sec$ treatment time in a continuous PEF treatment system. Eight log reduction was obtained for E. coli and P. fluorescens and 3 logs reduced for B. stearothermophilus under PEF treatment conditions of $210\;{\mu}sec$ treatment time, 60 kV/cm pulse intensity at $50^{\circ}$. There was no significant change in pH and titration acidity of milk after PEF treatment. The electrical energy required to achieve 8 log reduction for E. coli and P. fluorescens was estimated to be about 0.74 kJ/L.