Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12039

Colonizing Ability of Pseudomonas fluorescens 2112, Among Collections of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens spp. in Pea Rhizosphere  

Kim, Sang-Dal (School of Biotechnology, Yeungnam University)
Fuente, Leonardo De La (Department of Entomology and Plant Pathology, Auburn University)
Weller, David M. (Department of Plant Pathology, USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University)
Thomashow, Linda S. (Department of Plant Pathology, USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.6, 2012 , pp. 763-770 More about this Journal
Abstract
Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 genotypes of 2,4-DAPG producers, by phlD restriction fragment length polymorphism (RFLP). The colonizing ability of P. fluorescens 2112 in pea rhizosphere was equal to the well-known pea colonizers, P. fluorescens Q8r1 (genotype D) and MVP1-4 (genotype P), after 6 cycling cultivations for 18 weeks. Four tested 2,4-DAPG-producing Pseudomonas spp. could colonize with about a 96% dominance ratio against total bacteria in pea rhizosphere. The strain P. fluorescens 2112 was as good a colonizer as other Pseudomonas spp. genotypes in pea plant growth-promoting rhizobacteria.
Keywords
Pseudomonas fluorescens; 2,4-diacetylphloroglucinol (2,4-DAPG); colonization; plant growth-promoting rhizobacteria(PGPR);
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Rattray, E. A., J. I. Prosser, L. A. Glover, and K. Killham. 1995. Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Appl. Environ. Microbiol. 61: 2950-2957.
2 Redecker, D., I. S. Feder, P. Vinuesa, T. Batinic, U. Schulz, K. Kosch, and D. Werner. 1999. Biocontrol strain Pseudomonas sp. W34: Specific detection and quantification in the rhizosphere of Cucumis sativus with a DNA probe and genotypic characterization by DNA fingerprinting. Z. Naturforsch. 54c: 359-370.
3 Sanchez-Contreras, M., M. Martin, M. Villacieros, F. O'Gara, I. Bonilla, and R. Rivilla. 2001. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacteriol. 184: 1587-1596.
4 Kloepper, J. W., S. Tuzum, L. Liu, and G. Wei. 1993. Plant growth promoting rhizobacteria as inducer of systemic disease resistance, pp. 156-165. In R. D. Lumsden and J. L. Vaughn (eds.). Pest Management: Biologically Based Technologies. American Chemical Society, Washington DC, WA, USA.
5 Kloepper, J. W. and C. J. Beauchamp. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38: 1219-1232.   DOI
6 Landa, B. B., O. V. Marvrodi, J. M. Raaijmarkers, B. B. McSpadden Gardener, L. S. Thomashow, and D. M. Weller. 2002. Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the root of pea plants. Appl. Environ. Microbiol. 68: 3226-3237.   DOI   ScienceOn
7 Landa, B. B., H. A. de Werd, B. B. McSpadden Gardener, and D. M. Weller. 2002. Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere. Phytopathology 92: 129-137.   DOI   ScienceOn
8 Landa, B. B., D. M. Mavrodi, L. S. Thomashow, and D. M. Weller. 2003. Interaction between strain of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheet. Phytopathology 93: 982-994.   DOI   ScienceOn
9 Lee, E. T. and S. D. Kim. 2001. An antifungal substance, 2,4-diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against Phytophthora capcisi. Kor. J. Appl. Microbiol. Biotechnol. 29: 37-42.
10 Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28: 334-340.
11 Lee, E. T., H. K. Jung, and S. D. Kim. 2003. Pyoveridin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421.
12 Loper, J. E., C. Haack, and M. N. Schroth. 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato. Appl. Environ. Microbiol. 49: 416-422.
13 Lugtenberg, B. J. J., L. Dekkers, and G. V. Bloemberg. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461-490.   DOI   ScienceOn
14 Lugtenberg, B., A. J. van der Bij, G. Bloemberg, T. Chin-AWoeng, L. Dekker, L. Kravchenko, et al. 1996. Molecular basis of rhizosphere colonization by Pseudomonas bacteria, pp. 433-440. In G. Stacey, B. Mullin, and P. M. Gresshoff (eds.). Biology of Plant-Microbe Interactions. ISPMB, St. Paul, MN, USA.
15 Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87, J. Bacteriol. 181: 3155-3163.
16 Espinosa-Urgel, M., A. Salido, and J. L. Ramos. 2000. Genetic analysis of function involved in adhesion of Pseudomonas putida to seed. J. Bacteriol. 182: 2363-2369.   DOI   ScienceOn
17 McSpadden Gardener, B. B., K. L. Schroeder, S. E. Kalloger, J. M. Raaijmarkers, L. S. Thomashow, and D. W, Weller. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66: 1939-1946.   DOI   ScienceOn
18 Marvrodi, O. V., B. B. McSpadden Gardener, D. V. Mavrodi, R. F. Bonsall, D. M. Weller, and L. S. Thomashow. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91: 35-43.   DOI   ScienceOn
19 Mazzola, M. and R. J. Cook. 1991. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent Pseudomonads in the wheat rhizosphere. Appl. Environ. Microbiol. 57: 2171-2178.
20 McSpadden Gardener, B. B., D. V. Mavrodi, L. S. Thomashow, and D. M. Weller. 2000. A rapid polymerase chain reaction-based assay characterizing rhizosphere population of 2,4-diacetylphloroglucinol-producing bacteria. Phytopathology 91: 44-54.
21 Picard, C., F. Di Cello, M. Ventura, R. Fani, and A. Guckert. 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955.   DOI   ScienceOn
22 Raaijmakers, J. M. and D. M. Weller. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol. Plant Microbe Interact. 11: 144-152.   DOI   ScienceOn
23 Raaijmakers, J. M., R. F. Bonsall, and D. M. Weller. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470-475.   DOI   ScienceOn