• Title/Summary/Keyword: P-wave Velocity

Search Result 331, Processing Time 0.027 seconds

Preliminary Investigation for Quality Control of Railroad Compaction Fills Using Stiffness Measurements (강성 측정을 이용한 철도 토공 노반의 품질관리 예비연구)

  • Park, Chul-Soo;Park, In-Beom;Kim, Hak-Sung;Choi, Chan-Yong;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.158-167
    • /
    • 2008
  • The quality control of compacted fills has been carried out by evaluating relative densities and coefficients of soil reaction. These measures have several limitations regarding repeatability and reliability of field measurements, and difficulties to use in the fills including large grain size as gravels and boulders. Also, the density is not directly related to the design parameter such as resilient modulus. A preliminary investigation for the usage of the stiffness as a control measure has been carried out. In the laboratory, the stiffness (P-wave velocity) was measured during compaction tests. The stiffness at the optimal moisture content was proposed to use a target control parameter likewise maximum dry density. A field method to match the target stiffness was also proposed by considering easiness of the method and availability of equipment. The most phenomenal feature of the method is that the control parameter (stiffness) is closely related to resilient modulus and can be consistently used from the design stage to the field control during construction.

  • PDF

Correlation of mineralogical and textural properties with mechanical qualities of granite dimension stone from the Namwon area, Korea (남원지역 화강암 석재의 품질, 암석조직과 구성광물의 비교연구)

  • 홍세선;윤현수;이병태
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.105-121
    • /
    • 2004
  • The purpose of this study is to investigate the relationship between petrographical and engineering properties of granitic rocks, widely used as building and ornamental stones in Korea, at the Namwon are a. This area is one of the most famous area as a domestic dimension stone production. The granitic rocks were examined for grain sizes, modal compositions and then same samples were tested to determine specific gravity, water absorption, porosity, uniaxial compressive strength, tensile strength, abrasive hardness, P-wave velocity, modulus of elasticity and Poisson's ratio. It is suggested that the influence of the grain size on the engineering properties is more important than that of the mode of mineralogical compositions. And quartz contents also significantly influence the engineering properties of granitic rocks.

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF

Evolution of dynamic mechanical properties of heated granite subjected to rapid cooling

  • Yin, Tubing;Zhang, Shuaishuai;Li, Xibing;Bai, Lv
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.483-493
    • /
    • 2018
  • Experimental study of the deterioration of high-temperature rock subjected to rapid cooling is essential for thermal engineering applications. To evaluate the influence of thermal shock on heated granite with different temperatures, laboratory tests were conducted to record the changes in the physical properties of granite specimens and the dynamic mechanical characteristics of granite after rapid cooling were experimentally investigated by using a split Hopkinson pressure bar (SHPB). The results indicate that there are threshold temperatures ($500-600^{\circ}C$) for variations in density, porosity, and P-wave velocity of granite with increasing treatment temperature. The stress-strain curves of $500-1000^{\circ}C$ show the brittle-plastic transition of tested granite specimens. It was also found that in the temperature range of $200-400^{\circ}C$, the through-cracks induced by rapid cooling have a decisive influence on the failure pattern of rock specimens under dynamic load. Moreover, the increase of crack density due to higher treatment temperature will result in the dilution of thermal shock effect for the rocks at temperatures above $500^{\circ}C$. Eventually, a fitting formula was established to relate the dynamic peak strength of pretreated granite to the crack density, which is the exponential function.

Seven Days Breaking Up Prolonged Sitting Improves Systemic Endothelial Function in Sedentary Men (일주일간의 간헐적 좌식차단의 혈관기능 개선 효과)

  • Park, Soo Hyun;Yoon, Eun Sun;Jae, Sae Young
    • Exercise Science
    • /
    • v.26 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • PURPOSE: To examine the cumulative (7 days) effect of breaking up prolonged sitting on systemic endothelial function in sedentary men. METHODS: Thirty sedentary men ($33.93{\pm}5.72years$) participated in two randomized 7 days sitting trial (Sit group (control) vs. Breaks group). The protocol of Breaks group is as follows: 4-minute of moderate-intensity marching in place (walking) every 1 hour during business hour (total: 8 breaks/day). Assessment of brachial artery endothelial function using flow-mediated dilation (FMD) and arterial stiffness indices (augmentation index, arterial pressure and pulse wave velocity) were measured before and after 7 days treatment. RESULTS: Brachial artery FMD significantly increased after 7 days breaking up prolonged sitting treatment (Breaks groups, $9.65{\pm}2.61$ to $9.62{\pm}2.6%$) compared with 7 days prolonged sitting (Sit group, $8.37{\pm}3.41$ to $10.11{\pm}3.75%$) (interaction effect, p=.004). Arterial pressure (AP) significantly increased after treatment (Breaks group, $2.75{\pm}2.19$ to $2.38{\pm}1.63mmHg$, p=.002) in Sit group but there was no change (Sit group, $1.00{\pm}3.18$ to $2.50{\pm}9.23mmHg$) in Breaks groups (interaction effect, p=.008). CONCLUSIONS: These finding show that 7 days regular breaking up prolonged sitting improve in FMD, compared with prolonged sitting. Therefore, regular breaking up prolonged sitting may improve systemic endothelial function in sedentary men.

Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu (대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용)

  • Yim Sung-Bin;Kim Gyo-Won;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • This paper presents the application of a neural network for prediction of the unconfined compressive strength from physical properties and schmidt hardness number on rock samples. To investigate the suitability of this approach, the results of analysis using a neural network are compared to predictions obtained by statistical relations. The data sets containing 55 rock sample records which are composed of sandstone and shale were assembled in Daegu area. They were used to learn the neural network model with the back-propagation teaming algorithm. The rock characteristics as the teaming input of the neural network are: schmidt hardness number, specific gravity, absorption, porosity, p-wave velocity and S-wave velocity, while the corresponding unconfined compressive strength value functions as the teaming output of the neural network. A data set containing 45 test results was used to train the networks with the back-propagation teaming algorithm. Another data set of 10 test results was used to validate the generalization and prediction capabilities of the neural network.

Joint Electromagnetic Inversion with Structure Constraints Using Full-waveform Inversion Result (완전파형역산결과를 구조적 제약 조건으로 이용한 고해상도 전자탐사 복합역산 알고리듬 개발)

  • Jeong, Soocheol;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.187-201
    • /
    • 2014
  • Compared with the separated inversion of electromagnetic (EM) and seismic data, a joint inversion using both EM and seismic data reduces the uncertainty and gives the opportunity to use the advantage of each data. Seismic fullwaveform inversion allows velocity information with high resolution in complicated subsurface. However, it is an indirect survey which finds the structure containing oil and gas. On the other hand, marine controlled-source EM (mCSEM) inversion can directly indicate the oil and gas using different EM properties of hydrocarbon with marine sediments and cap rocks whereas it has poor resolution than seismic method. In this paper, we have developed a joint EM inversion algorithm using a cross-gradient technique. P-wave velocity structure obtained by full-waveform inversion using plane wave encoding is used as structure constraints to calculate the cross-gradient term in the joint inversion. When the jointinversion algorithm is applied to the synthetic data which are simulated for subsea reservoir exploration, images have been significantly improved over those obtained from separate EM inversion. The results indicate that the developed joint inversion scheme can be applied for detecting reservoir and calculating the accurate oil and gas reserves.

Geoacoustic characteristics of Quaternary stratigraphic sequences in the mid-eastern Yellow Sea (황해 중동부 제4기 퇴적층의 지음향 특성)

  • Jin, Jae-Hwa;Jang, Seong-Hyeong;Kim, Seong-Pil;Kim, Hyeon-Tae;Lee, Chi-Won;Chang, Jeong-Hae;Choi, Jin-Hyeok;Ryang, Woo-Heon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 2001
  • According to analyses of high-resolution seismic profiles (air gun, sparker, and SBP) and a deep-drill core(YSDP 105) in the mid-eastern Yellow Sea, stratigraphic and geoacoustic models have been established and seismo-acoustic modeling has been fulfilled using ray tracing of finite element method. Stratigraphic model reflects seismo-, litho-, and chrono-stratigraphic sequences formed under a significant influence of Quaternary glacio-eustatic sea-level fluctuations. Each sequence consists of terrestrial to very-shallow-marine coarse-grained lowstand systems tract and tidal fine-grained transgressive to highstand systems tract. Based on mean grain-size data (121 samples) of the drill core, bulk density and P-wave velocity of depositional units have been inferred and extrapolated down to a depth of the recovery using the Hamilton's regression equations. As goo-acoustic parameters, the 121 pairs of bulk density and P-wave velocity have been averaged on each unit of the stratigraphic model. As a result of computer ray-tracing simulation of the subsurface strata, we have found that there are complex ray paths and many acoustic-shadow zones owing to the presence of irregular layer boundaries and low-velocity layers.

  • PDF

Cross-Sectional Relations of Arterial Stiffness and Inflammatory Markers in Korean Adults Aged 50 Years and Older (지역사회 거주 50세 이상 성인의 동맥경직도와 염증반응인자와의 관련성)

  • Ryu, So-Yeon;Shin, Min-Ho;Lee, Young-Hoon;Rhee, Jung-Ae;Choi, Jin-Su;Park, Kyeong-Soo;Nam, Hae-Sung;Jeong, Seul-Ki;Kweon, Sun-Seog
    • Journal of agricultural medicine and community health
    • /
    • v.36 no.2
    • /
    • pp.101-112
    • /
    • 2011
  • Objectives: The aim of this study is to determine arterial stiffness levels as measured by brachial-ankle pulse wave velocity (baPWV) and to identify the association between arterial stiffness and inflammatory markers, in healthy adults over 50 years old. Methods: The study population consisted of 4617 persons over the age of 50 years who participated in the baseline survey of the Dong-gu Study, which was conducted in 2007 and 2008. Arterial stiffness was measured using baPWV. A multiple regression analysis was performed to assess the relationship between conventional cardiovascular risk factors and inflammatory markers, including white blood cell (WBC) counts, high-sensitive C-reactive protein (hs-CRP), and gamma glutamyltransferase (GGT). Results: After adjustment for conventional cardiovascular risk factors including sex, age, smoking status, body mass index, systolic blood pressure, fasting glucose, hypertension or diabetic medication, total cholesterol, triglycerides, uric acid, and alanine aminotransferase, baPWV was significantly associated with WBC counts (${\beta}$=0.158, p<0.0001), hs-CRP (${\beta}$=0.244, p=0.026), and GGT (${\beta}$=0.003, p<0.0001). Conclusion: This study shows that arterial stiffness correlates with inflammatory markers. Arterial stiffness may be used as a composite risk factor to identify persons with higher risk for cardiovascular disease. Additionally, arterial stiffness may be a marker for future cardiovascular disease and a target for prevention.

Role of the Vestibular and Medullary Reticular Neuclei for the Motor Evoked Potentials in Rats (흰쥐의 운동유발전위에 대한 전정신경핵과 연수망상핵의 역할)

  • Lee, Moon-Young;Lee, Sung-Ho;Kim, Jae-Hyo;Park, Byung-Rim;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.603-611
    • /
    • 1997
  • The motor evoked potentials (MEPs) have been advocated as a method of monitoring the integrity of spinal efferent pathways in various injury models of the central nervous system. However, there were many disputes about origin sites of MEPs generated by transcranial electrical stimulation. The purpose of present study was to investigate the effect of major extrapyramidal motor nuclei such as lateral vestibular nucleus (VN) and medullary reticular nucleus (mRTN) on any components of the MEPs in adult Sprague-Dalwey rats. MEPs were evoked by electrical stimulation of the right sensorimotor cortex through a stainless steel screw with 0.5mm in diameter, and recorded epidurally at T9 - T10 spinal cord levels by using a pair of teflon-coated stainless steel wire electrodes with 1mm exposed tip. In order to inject lidocaine and make a lesion, insulated long dental needle with noninsulated tips were placed stareotoxically in VN and mRTN. Lidocaine of $2{\sim}3\;{\mu}l$ was injected into either VN or mRTN. The normal MEPs were composed of typical four reproducible waves; P1, P2, P3, P4. The first wave (P1) was shown at a mean latency of 1.2 ms, corresponding to a conduction velocity of 67.5 m/sec. The latencies of MEPs were shortened and the amplitudes were increased as stimulus intensity was increased. The amplitudes of P1 and P2 were more decreased among 4 waves of MEPs after lidocaine microinjection into mRTN. Especially, the amplitude of P1 was decreased by 50% after lidocaine microinjection into bilateral mRTN. On the other hand, lidocaine microinjection into VN reduced the amplitudes of P3 and P4 than other MEP waves. However, the latencies of MEPs were not changed by lidocaine microinjection into either VN or mRTN. These results suggest that the vestibular and reticular nuclei contribute to partially different role in generation of MEPs elicited by transcranial electrical stimulation.

  • PDF