• Title/Summary/Keyword: P-regular space

Search Result 28, Processing Time 0.024 seconds

Comparative Analysis of the Difference in the Midgut Microbiota between the Laboratory Reared and the Field-caught Populations of Spodoptera litura

  • Pandey, Neeti;Rajagopal, Raman
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.423-433
    • /
    • 2019
  • Midgut microbiota is known to play a fundamental role in the biology and physiology of the agricultural pest, Spodoptera litura. This study reports the difference in the larval midgut microbiota of field-caught and laboratory-reared populations of S. litura by performing 16S rDNA amplicon pyrosequencing. Field populations for the study were collected from castor crops, whereas laboratory-reared larvae were fed on a regular chickpea based diet. In total, 23 bacterial phylotypes were observed from both laboratory-reared and field-caught caterpillars. Fisher's exact test with Storey's FDR multiple test correction demonstrated that bacterial genus, Clostridium was significantly abundant (p < 0.05) in field-caught larvae of S. litura as compared to that in the laboratory-reared larvae. Similarly, bacterial genera, such as Bradyrhizobium, Burkholderia, and Fibrisoma were identified (p < 0.05) predominantly in the laboratory-reared population. The Bray-Curtis dissimilarity matrix depicted a value of 0.986, which exhibited the maximum deviation between the midgut microbiota of the laboratory-reared and field-caught populations. No significant yeast diversity was seen in the laboratory-reared caterpillars. However, two yeast strains, namely Candida rugosa and Cyberlindnera fabianii were identified by PCR amplification and molecular cloning of the internal transcribed space region in the field-caught caterpillars. These results emphasize the differential colonization of gut residents based on environmental factors and diet.

MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS

  • Constantinescu, Oana
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1443-1482
    • /
    • 2008
  • In this paper we define a Myller configuration in a Finsler space and use some special configurations to obtain results about Finsler subspaces. Let $F^{n}$ = (M,F) be a Finsler space, with M a real, differentiable manifold of dimension n. Using the pull back bundle $({\pi}^{*}TM,\tilde{\pi},\widetilde{TM})$ of the tangent bundle $(TM,{\pi},M)$ by the mapping $\tilde{\pi}={\pi}/TM$ and the Cartan Finsler connection of a Finsler space, we obtain an orthonormal frame of sections of ${\pi}^{*}TM$ along a regular curve in $\widetilde{TM}$ and a system of invariants, geometrically associated to the Myller configuration. The fundamental equations are written in a very simple form and we prove a fundamental theorem. Important lines in a Finsler subspace are defined like special lines in a Myller configuration, geometrically associated to the subspace: auto parallels, lines of curvature, asymptotes. Torse forming vector fields with respect to the Cartan Finsler connection are characterized by means of the invariants of the Frenet frame of a versor field along a curve, and the new notion of torse forming vector fields in the sense of Myller is introduced. The particular cases of concurrence and parallelism in the sense of Myller are completely studied, for vector fields from the distribution $T^m$ of the Myller configuration and also from the normal distribution $T^p$.

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

The Crystal Structure of 2-Methyl-3-(N-trimethyl ammonium)phenol Iodide (2-Methyl-3-(N-trimethyl ammonium)phenol Iodide의 결정 구조)

  • 조성일;윤혜숙;구정회
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.135-141
    • /
    • 1980
  • The crystal and molecular structure of 2-methyl-3-(N-trimethyl ammonium)phenol iodide, $C_{10}H_{16}NOI, was determined by X-ray diffraction method. The compound crystallizes in the orthorhombic space group $P_{na2}_{1}$ with a=13.327(3), b=12.496(3), C=7.227(2)A and Z=4. A total of 489 independent observed reflections were collected by the automated Four-circle diffractometer and was solved by heavy atom method and refined by anisotropic block-diagonal least-squares method to the R value of 0.04. The benzene ring is slightly distorted from regular hexagon. The I atom and 2-methyl-3-(N-trimethyl ammonium)phenol group is held together by van der Waals forces in the crystal. Intermolecular hydrogen bond is of the type O-H....I with the length 3.35.angs.. Apart from the hydrogen bonding system the molecules are held together by van der Waals forces in the crystal.

  • PDF

Synthesis and Crystal Structure of Tetrakis(2-ethylimidazole)bis(thiocyanate-N) nickel(II) Complex (Tetrakis(2-ethylimidazole)bis(thiocyanate-N) nickel(II) 착물의 합성 및 결정구조)

  • 김인회;조지연;김종혁;김종승;서일환
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.222-226
    • /
    • 2001
  • The title complex, $Ni(L)_4(NCS)_2$(1) (L=2-ethylimidazole) has been synthesized and charac-terized by X-ray single crystallography. The complex 1 crystallizes in the tertragonal system P4nc space group with a=10.587(2), $c=12.927(3){\AA}$, Z=2m, $R_1$=0.581 and $wR_$=0.1675 for 672 independent reflection. The central Ni(II) atom of the complex has a regular octa-hedral coordination geometry, with the 2-ethylimidazole ligands bonding through nitrogen atom and the isothiocyanate ligands bonding through nitrogen atom in a trans arrangement.

  • PDF

The Crystal Structure of Hydroazonium Diphosphate, $N_2H_6H_4(PO_4)_2$ (Hydrazonium Diphosphate, $N_2H_6H_4(PO_4)_2$의 結晶構造)

  • Koo, Chung-Hoe;Ahn, Choong-Tai;Kim, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 1965
  • Hydrazonium diphosphate crystallizes with the space-group symmetry $P2_1/C.$ There are two formular units of $N_2H_6H_4(PO_4)_2$ in the unit cell, for which $a = 4.52{\pm}0.02, b = 8.06{\pm}0.03, c = 10.74{\pm}0.03{\AA}\;and\; {\beta} = 100{\pm}0.5^{\circ}.$ The determination of the crystal structure was carried out by means of Patterson, Fourier and difference syntheses. The phosphate group has configuration of nearly regular tetrahedron with the mean P-O distance of $1.55{\AA}.$ The N-N distance found is $1.40{\AA},$ which corresponds to previously reported values for the $N_2H_6^{++} \;ion \;in\; N_2H_6SO_4.$ A molecule has a transform with a center of symmetry in it. Each nitrogen atom forms three hydrogen bonds with the N…O distances 2.62, 2.79 and $2.89{\AA}.$ And a O…O hydrogen bond between different phosphate groups is found with the distance $2.63{\AA}.$ The structure is held together by three-dimensional network of the strong hydrogen bonds.

  • PDF

Comparison of insertion torque regarding changes in shape, diameter, and length of orthodontic miniscrews (교정용 미니스크류의 형상에 따른 식립 토오크의 비교)

  • Lim, Seon-A;Cha, Jung-Yul;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.89-97
    • /
    • 2007
  • Objective: The purpose of this study was to measure the insertion torque of orthodontic miniscrews regarding changes in their shape, diameter, and length. Methods: Torque values were measured during continuous insertion of the miniscrews into solid rigid polyurethane foam, using a torque tester of driving motor type with a regular speed of 3 rpm. Orthodontic miniscrews (Biomaterials Korea, Seoul, Korea) of cylindrical type and taper type were used. Results: Increasing the length and diameter of the miniscrews increased the maximum insertion torque value in both cylindrical and taper type screws. Insertion torque was increased at the incomplete head of the cylindrical type screw, and at the tapered part of the taper type screw. The insertion torque value of miniscrews was influenced most by diameter, then shape and length. As a result, it was shown that the diameter of the screw had the most influence on insertion torque, and the taper type screw had a higher torque value than the cylindrical type screw. Conclusion: Therefore, a large diameter or taper type screw are adequate for areas of thin cortical bone with a large interdental space, and a small diameter or cylindrical type screw are adequate in the mandibular molar area or the midpalatal area having thick cortical bone.

The Crystal Structure of Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ) (Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ)의 결정구조)

  • Kim Sei Hwan;NagGung Hae;Jeon, Ho Jung
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.599-603
    • /
    • 1993
  • Crystal structure of bis(1,2-diaminopropane)palladium(II) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: $Pd_2C_{10}H_{10}N_{4}O_{8}$, $M_W$ = 573.09, orthorhombic, space group $P_{ccn}$ (No = 56), a = 16.178(5), b = 16.381(6), c = 6.685(2)$\{AA}$, V = 1771.6 $\{AA}^3$, $M_W$W = 573.09, $D_c$ = 2.014 g${\cdot}c\;m^{-3}$, Z = 4, T = 294K, F(000) = 1056.0 and $\mu$ = 20.466 c$m^{-1}$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$ = 0.7107 $\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-squares methods using Pivot weights. The final R and S values were R = 0.065, $R_W = 0.059, R_{all}$ = 0.065 and S = 4.315 for 605 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angle of $18(l)^{\circ}$ between thier planes. In the crystal structure, they do not have the Magnus's salt type mixed stacks; instead, the complex anions form regular stacks along the c-axis with the M-M bond length of $3.343(5)\AA$ and their stacks are surrounded by the complex cations through hydrogen bonds with the nitrogen-oxygen distances of 2.94(3) and $3.31(4)\AA.$

  • PDF