• Title/Summary/Keyword: P-V Characteristics

Search Result 1,900, Processing Time 0.035 seconds

Screening of New Mediators for Lignin Degradation Based on Their Electrochemical Properties and Interactions with Fungal Laccase

  • Shin, Woon-Sup;Cho, Hee-Yeon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.1-8
    • /
    • 2006
  • This study was performed to evaluate extensive electrochemical characteristics of 23 commercially available mediators for laccase. Electrochemical properties, interactions with laccases, and ability to degrade lignin were compared for selected mediators. Among them, NNDS has very similar electrochemical properties in terms of reversibility and redox potential (about 470 mV vs. Ag/AgCl at pH=7) compared to ABTS which is a well-known mediator. Specific activity of purified laccase from Cerrena unicolor was determined by both 2,2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 1-nitroso-2-naphthol -3,6-disulfonic acid (NNDS). The specific activity of the laccase was 23.2 units/mg with ABTS and 21.2 units/mg with NNDS. The electron exchange rate for NNDS with laccase was very similar to that for ABTS, which meant that NNDS had similar mediating capability to ABTS. Determining methanol concentration after reacting with laccase compared to lignin degradation capabilities of both ARTS and NNDS. ARTS or NNDS alone cannot degrade lignin, but in the presence of laccase enhanced the rate of lignin degradation. ABTS showed better activity in the beginning, and the reaction rate of NNDS with lignin was about a half of that of ABTS at 10 minute, but the final concentration of methanol produced in 1 hour was very similar each other. The reason for similar methanol concentration for both ABTS and NNDS can be interpreted as the initial activity of ABTS was better than that of NNDS, but ABTS would be inhibited laccase activity more during the incubation.

Effects of Cynanchum Wilfordii Extract on In vitro Ruminal Fermentation Characteristics and Methane Production (백하수오 추출물이 In vitro 반추위 발효성상 및 메탄가스 생성에 미치는 영향)

  • Yang, Seung-Hak;Lim, Joung-Soo;Kim, Byul;Hwang, Ok-Hwa;Cho, Sung-Back;Choi, Dong-Yoon;Choi, Seok-Geun;Hwang, Seong-Gu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2013
  • The objective of this study is to investigate the effects of Cynanchum wilfordii (CW) on cell viability, anti-oxidant activity, volatile fatty acid (VFA) production and methane gas production. Collected rumen fluid incubated with CW powder (1% w/v) for 12 and 24 hours were analyzed for pH, VFAs and methane. Alamar blue assay showed no significant difference on the viability of 3T3-L1 and C2C12 cells treated with CW for 24 hours. TBARS data showed a dose dependent increase on the antioxidant activity of CW. VFAs increased in the CW-treated groups compared to the control group. In addition, propionate increased more than other VFAs by the treatment with CW. There was a significant decrease in methane gas production in batch culture treated with CW in 12hrs. In conclusion, it was suggested that Cynanchum wilfordii could manipulate rumen fermentation considered by increasing VFA production and inhibition of methanogenesis.

The Response Characteristics of as Addition Ratio of Arsenic in $CaWO_4/a-Se$ based X-ray Conversion Sensor ($CaWO_4/a-Se$ 구조의 X선 변환센서에서 a-Se의 Arsenic 첨가량에 따른 반응 특성)

  • Kang, Sang-Sik;Suk, Dae-Woo;Cho, Sung-Ho;Kim, Jae-Hyung;Nam, Namg-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.416-419
    • /
    • 2002
  • There are being two prominent studying for Digital Radiography. Direct and Indirect method of Digital Radiography are announced for producing high quality digital image. The one is using amorphous selenium as photoconductor and the other is using phosphor layer as a light conversion. But each two systems have strength and weakness such as high voltage and blurring effect. In this study, we investigated the electrical characteristic of $multi-layer\left(CaWO_{4}+a-Se \right)$ as a photoconductor according to the changing arsenic composition ratio. This is a basic research for developing of Hybrid digital radiography which is a new type X-ray detector. The arsenic composition ratio of a-Se compound is classified into 7 different kinds which have 0.1%, 0.3%, 0.5%, 1%, 1.5%, 5%, 10% and were made test sample throught thermo-evaporation. The phosphor layer of $CaWO_4$ was overlapped on a-Se using EFIRON optical adhesives. We measured the dark and photo current about the test sample and compared the electrical characteristic of the net charge and signal-to-noise ratio. Among other things, test sample of compound material of 0.3% arsenic showed good characteristic of $2.45nA/cm^2$ dark current and $357.19pC/cm^2/mR$ net charge at $3V/{\mu}m$.

  • PDF

Gamma radiation attenuation properties of tellurite glasses: A comparative study

  • Al-Hadeethi, Y.;Sayyed, M.I.;Tijani, S.A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2005-2012
    • /
    • 2019
  • This work investigated the radiation attenuation characteristics of three series of tellurite glass systems with the following compositions: 30PbO-10ZnO-xTeO2-(60-x)B2O3 where x = 10, 30, 40, 50 and 60 mol%, xBaO-xB2O3-(100-2x)TeO2 with x = 15-40 mol% and 50ZnO-(50-x)P2O5-xTeO2, where x = 0, 10, .40 mol%. The results revealed that the attenuation parameters in all the samples decrease with increase in the energy, which implied that all the samples have better interaction with gamma photons at low energies and thus higher photon attenuating efficiency. From the three systems, the samples coded as PbZnBTe60, BaBTe70 and ZnPTe40 have the lowest half value layer values and accordingly have superior photon attenuation efficacy. The maximum effective atomic number values were found for energy less than 0.1 MeV particularly near the K-edges absorption of the heavy atomic number elements such as Te, Ba and Pb. At the lowest energy, the Zeff values are found in the range of 62.33-66.25, 49.43-50.81 and 24.99-35.83 for series 1-3 respectively. Also, we found that the density of the glass remarkably affects the photon attenuation ability of the selected glasses. The mean free path results showed that the PbO-ZnO-TeO2-B2O3 glass system has better radiation shielding efficiency than the glass samples in series 2 and 3.

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

Genetic Analysis and Characterization of a Bacteriophage ØCJ19 Active against Enterotoxigenic Escherichia coli

  • Kim, Gyeong-Hwuii;Kim, Jae-Won;Kim, Jaegon;Chae, Jong Pyo;Lee, Jin-Sun;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.746-757
    • /
    • 2020
  • Enterotoxigenic Escherichia coli (ETEC) is the major pathogenic E. coli that causes diarrhea and edema in post-weaning piglets. In this study, we describe the morphology and characteristics of ØCJ19, a bacteriophage that infects ETEC, and performed genetic analysis. Phage ØCJ19 belongs to the family Myoviridae. One-step growth curve showed a latent phase of 5 min and burst size of approximately 20 phage particles/infected cell. Phage infectivity was stable for 2 h between 4℃ and 55℃, and the phage was stable between pH 3 and 11. Genetic analysis revealed that phage ØCJ19 has a total of 49,567 bases and 79 open reading frames (ORFs). The full genomic sequence of phage ØCJ19 showed the most similarity to an Escherichia phage, vB_EcoS_ESCO41. There were no genes encoding lysogeny, toxins, virulence factors, or antibiotic resistance in this phage, suggesting that this phage can be used safely as a biological agent to control ETEC. Comparative genomic analysis in terms of the tail fiber proteins could provide genetic insight into host recognition and the relationship with other coliphages. These results showed the possibility to improve food safety by applying phage ØCJ19 to foods of animal origin contaminated with ETEC and suggests that it could be the basis for establishing a safety management system in the animal husbandry.

Characteristics of Crude Lipoxygenase in Chinese Cabbages (배추 Lipoxygenase 의 특성)

  • Kim, Dong-Kyoung;Han, Kee-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.710-715
    • /
    • 1997
  • Inactivation of lipoxygenase activity in Chinese cabbage was shown after salting and heat treatments. Crude lipoxygenase was obtained from treatment of $(NH_{4})_{2}SO_{4}$. Lipoxygenase activity in Chinese cabbage was about 50% after 20 hrs of salting in 13% (w/v) concentration. After heating at $90^{\circ}C$ for 15 min, residual activity of lipoxygenase was about 50%. Inactivation of lipoxygenase was highly accelerated by increasing temperature and heating time. Decimal reduction time (D-value) were 42, 20 and 14 min at 70, 80 and $90^{\circ}C$, respectively. When cabbage was soaked in 0.05 M $CaCl_{2}$ and heated at $55^{\circ}C$ for 1.5 hr, higher activity of crude lipoxygenase was found compared with the heat treatment without $CaCl_{2}$.

  • PDF

Tetrahydrofuran-Containing Crown Ethers as Ionophores for NH+4-Selective Electrodes

  • Jin, Hua-Yan;Kim, Tae-Ho;Kim, Jin-Eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • The ammonium ion-selective electrodes ($NH^+_4$-ISEs) based on the tetrahydrofuran(THF)-containing-16-crown-4 derivatives,1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^1$) and 5,10,15,20,-tetramethyl-1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^2$), were prepared and the electrode characteristics were tested. The conditioned $NH_4^+$-ISEs (E1) based on $L^1$ with TEHP as a plasticising solvent mediator gave best results with near-Nernstian slope of 53.9 mV/decade of activity, detection limit of $10^{-4.9}$ M, and enhanced selectivity coefficients for the $NH^+_4$ ion with respect to an interfering $K^+$ ion (log $K^{pot}_{NH_4^+,K^+}$ = -1.84). This result was compared to other ammonium ionophores reported previously, for example, that of nonactin (log $K^{pot}_{NH_4^+,K^+}$ = -0.92). The proposed electrode showed no significant potential changes in the range of 3.0 < pH < 9.0.

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

  • Kim, Dong Jin;Kim, Sun Young;You, Young Jun;Rhee, Key Pyo;Kim, Seong Hwan;Kim, Yeon Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.161-177
    • /
    • 2013
  • High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No.2 and no.3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS) model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC) model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS) model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences 'fly over' phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor (리튬이온 커패시터의 음극도핑 및 전기화학특성 연구)

  • CHOI, SEONGUK;PARK, DONGJUN;HWANG, GABJIN;RYU, CHEOLHWI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.