• Title/Summary/Keyword: P-S conversion

Search Result 725, Processing Time 0.035 seconds

The Effect of Temperature on the Photoluminescence Properties of the InZnP/ZnSe/ZnS (Core/Multishell) Quantum Dots (온도에 따른 InZnP/ZnSe/ZnS (핵/다중껍질) 양자점의 형광 특성 변화)

  • Son, Min Ji;Jung, Hyunsung;Lee, Younki;Koo, Eunhae;Bang, Jiwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.443-449
    • /
    • 2018
  • We investigated the temperature-dependent photoluminescence spectroscopy of colloidal InZnP/ZnSe/ZnS (core/shell/shell) quantum dots with varying ZnSe and ZnS shell thickness in the 278~363 K temperature range. Temperature-dependent photoluminescence of the InZnP-based quantum dot samples reveal red-shifting of the photoluminescence peaks, thermal quenching of photoluminescence, and broadening of bandwidth with increasing temperature. The degree of band-gap shifting and line broadening as a function of temperature is affected little by shell composition and thickness. However, the thermal quenching of the photoluminescence is strongly dependent on the shell components. The irreversible photoluminescence quenching behavior is dominant for thin-shell-deposited InZnP quantum dots, whereas thick-shelled InZnP quantum dots exhibit superior thermal stability of the photoluminescence intensity.

Bioconversion of Aniline to Acetaminophen and Overproduction of Acetaminophen by Streptomyces spp.

  • Jin, Hyung-Jong;Park, Ae-Kyung;Lee, Sang-Sup
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In order to obtain acetaminophen, a popular analgesic-antipyretic, though microbial p-hydroxylation and N-acetylation of aniline, various Streptomyces strains were screened. Aniline N-acetylation activity was rather ubiquitous but-hydroxylation activity was selective. Microbial conversion pathway of aniline to acetaminophen was considered to be through N-acetylation and p-hydroxylation or vice versa. However, depending on species used, o-hydroxylation and its degradation activity (S. fradiae) and acetaminophen degradation activity (S. coelicolar) were also detected. Among the screened Streptomyces strains, S fradiae NRRL 2702 showed the highest acetanilide p-hydroxylation activity (203% conversion rate). Furthermore, in S. fradiae carbon source and its concentration, phosphate ion concentration and pH of growth medium were found to play the crucial roles in p-hydroxylation activity. Through the proper combination of factors mentioned above, the ten times more activity (26-30% conversion rate) was attained.

  • PDF

Degraded Paddy Soils. I. Theoretical Analysis on the Sultide Formation and the Effect of Iron Hydroxide Upon Removal of Sulfide from Solution

  • Cho, Chai-Moo
    • Applied Biological Chemistry
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 1961
  • The formation of sulfide from sulfate has been discussed from the thermodynamic principles. No mechanism of the reaction has been presented. From the stoichiometric and Nernst equations for the conversion of sulfate into sulfide, it was concluded that the formation of sulfide from sulfate can take place more readily if pH of a medium is low. The difficulty of this conversion increases with increasing pH. As pH of a medium increases, the degree of dissociation of H₂S into S= increases and this, in turn, renders the chance of precipitation of sulfide as FeS easier. Higher the pH of a soil or medium, greater is the S= concentration. The concentration of ferrous ion required to remove dissolved sulfide in a medium by forming insoluble FeS decreases with increasing pH. From the theory it was pointed out that an application of lime and iron rich foreign substances to a soil may be effective in causing the removal of dissolved sulfide from solution.

  • PDF

Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns

  • Sato, Rina;Yoshimura, Kazuya;Sanada, Yukihisa;Sato, Tetsuro
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent (H*(10)) and life patterns, considering a dose reduction factor to estimate the indoor H*(10) and a conversion factor from H*(10) to the effective dose. Because personal dose equivalent (Hp(10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model's accuracy by comparing the estimated effective doses with Hp(10). The Hp(10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with Hp(10); however, the estimated effective doses were lower than Hp(10) for indoor sites. A comparison with the measured indoor H*(10) showed that the estimated indoor H*(10) was not underestimated. However, the Hp(10) to H*(10) ratio indoors, which corresponds to the practical conversion factor from H*(10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than Hp(10). Conclusion: The estimated effective doses correlated significantly with Hp(10), demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.

INFLUENCE OF TIP DISTANCE ON DEGREE OF CONVERSION OF COMPOSITE RESIN IN CURING WITH VARIOUS LIGHT SOURCES (광원에 따른 조사거리의 증가가 복합레진의 중합도에 미치는 영향)

  • Kim, Sang-Bae;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.273-279
    • /
    • 2004
  • Recently, newly developed single high-intensity LED curing lights for composite resins are claimed to have a higher intensity than previous LED curing lights and to results in optimal properties and short curing time. The purpose of this study was to determine the curing effectiveness of the curing units and to evaluate the relationship between the degree of polymerization and distance from curing light tip end to resin surface. One composite resin was tested(Filtek Z250). Thin film specimens were cured with a LED curing unit(Elipar Freelight 2, 10s), Plasma Arc curing unit(Flipo, 6s), Halogen curing light(XL3000, 20s) at four curing light tip to the resin surface(0mm, 2mm, 4mm, 6mm). Degree of conversion of composite resins were determined by a Fourier Transform Infrared Spectrometer(FTIR). From the present study, the following results were obtained. 1. In all curing units, relative light intensity was significantly decreased according to the increase of distance of light tip to the resin surface(p<0.05). LED curing units showed a higher percentile decrease in intensity than other curing units. 2. In all curing units, degree of conversion was decreased as increase of the distance but no statistically significant difference(p>0.05) except between 4mm and 6mm(p<0.05). 3. When comparing degree of conversion of light curing units at each distance(0mm, 2mm, 4mm, 6mm), LED curing light had a higher degree of conversion than plasma arc and halogen curing lights at 0, 2, 4mm(p<0.05). At 6mm, there was a no significant difference among the curing units(p>0.05).

  • PDF

Fabrication and characterization of XPM based wavelength converter module with monolithically integrated SOA's (SOA 집적 XPM형 파장변환기 모듈 제작 및 특성)

  • 김종회;김현수;심은덕;백용순;김강호;권오기;엄용성;윤호경;오광룡
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.509-514
    • /
    • 2003
  • Mach-Zehnder interferometric wavelength converters with monolithically integrated semiconductor optical amplifiers (SOA's) have been fabricated and characteristics of wavelength conversion at 10 Gb/s have been investigated for wavelength span of 40 nm. The devices have been achieved by using a butt-joint combination of buried ridge structure type SOA's and passive waveguides. In the integration, a new method has been applied that removes p+InP cladding layer leading to high propagation loss and forms simultaneously the current blocking and the cladding layer using undoped InP. The module packaging has been achieved by using a titled fiber array for effective coupling into the tilted waveguide in the wavelength converter. Using the module, wavelength conversion with power penalty lower than 1 ㏈ at 10 Gb/s has been demonstrated for wavelength span of 40 nm. In addition, it is show that the module can provide 2R (re-amplification, re-shaping) operation by demonstrating the conversion with the negative penalty.

Characteristics of the Conversion Pigment from Gardenia jasminoides Yellow Pigment (치자황색소로부터 변환된 색소의 특성)

  • Jeong, Hyung-Seok;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.319-323
    • /
    • 1998
  • Conversion of Gardenia jasminoides yellow pigment into blue-green pigment by 8 bacterial species was examed. Bioconversion pattern can be categorized into three types according to absorption spectra characteristics. The same pattern of the value of ${\Delta}E$ estimated by color differencemeter was also observed. Conversion rate by S. epidermidis was faster than other bacterial species. It took 16 hour for S. epidermidis to convert pigment at $37^{\circ}C$. Gardenia jasminoides yellow pigment and conversion pigment were completely separated by Amberlite XAD column chromatography with $H_2O-MeOH$ solvent system. Storage stability of the conversion pigment was better than Gardenia jasminoides yellow pigment.

  • PDF

A study on the n-CdS/p-InP solar cells (n-CdS/p-InP 태양전지에 관한 연구)

  • 송복식;최영복;한성준;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.406-412
    • /
    • 1995
  • A n-CdS thin films were evaporated by thermal evaporation method and their structure, optical transmission spectra and electrical characteristics were investigated. The photovoltaic characteristics of solar cells which were fabricated in optimum conditions measured. The evaporated CdS thin films showed in hexagonal structure and above 80% of optical transmission spectra regardless of impurity doping. The high quality thin films could be obtained at 150.deg. C temperature of substrate, which is useful for solar cell window layer with low resistivity of 6*10$\^$-2/(.ohm.-cm) by In doping We measured the electrical and optical characteristics of the n-CdS/p-InP heterojunction solar cells. The most efficient photovoltaic characteristics of heterojunction solar cells had the open circuit voltage of 0.66V, short circuit current density of 13.85mA/cm$\^$2/, fill factor of 0.576 and conversion efficiency of 8.78% under 60mW/cm$\^$2/ illumination.

  • PDF

GEOUNED: A new conversion tool from CAD to Monte Carlo geometry

  • J.P. Catalan;P. Sauvan;J. Garcia;J. Alguacil;F. Ogando;J. Sanz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2404-2411
    • /
    • 2024
  • The GEOUNED code is specifically designed to convert CAD models, defined using the B-rep approach, into MC radiation transport models, defined using the CSG approach, and vice versa from MC to CAD. This code incorporates standard features commonly found in conversion tools, including decomposition, conversion, and automatic void generation. Additionally, it introduces innovative features, mainly in the automatic void generation part, which are described in this article. GEOUNED has demonstrated successful application in highly detailed 3D models used in fusion neutronics, which are known for their complex geometries, particularly those utilized in ITER. The article includes examples showcasing GEOUNED's performance in these challenging models, as well as custom applications that highlight its flexibility in addressing non-standard problems. The code is open-source and utilizes Open CASCADE as the geometry engine, with FreeCAD serving as the Python API.

Basic design of hydrogen liquefier precooled by cryogenic refirgerator (극저온냉동기 예냉 수소액화기의 기초설계)

  • Kim, S.H.;Chang, H.M.;Kang, B.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.389-400
    • /
    • 1997
  • A thermodynamic cycle analysis is performed for refrigerator-precooled Linde-Hampson hydrogen liquefiers, including catalysts for the ortho-to-para(o-p) conversion. three different configurations of the liquefying system, depending upon the method of the o-p conversion, are selected for the analysis. After some simple and justifiable models are introduced, a general analysis program to predict the liquid yield and the figure of merit(FOM) is developed with incorporating the commercial computer code for the hydrogen properties. The discussion is focused on the effect of the two primary design parameters-the precooling temperature and the high pressrure of hydrogen. When the precooling temperature is in the range between 45 and 60 K, the optimal high pressure for the maximal liquid yield is found to be in the range between 100 to 140 bar, regardless of the o-p conversion. However, the FOM can be maximized at slightly smaller values of high pressures. It is remarkable to observe that the lower precooling temperatures are favorable since both the liquid yield and the FOM can be obtained without compressing hygrogen to extremely high pressures.

  • PDF