• Title/Summary/Keyword: P파

Search Result 190, Processing Time 0.022 seconds

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

원거리 지진자료로부터 유추된 한반도의 P파 도달시간 이상에 대한 연구

  • Lee, Deok-Gi;O, Seok-Hun;Yun, Yong-Hun;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2002
  • P wave travel-time delays have been analyzed and average travel-time anomalies due to lateral variation of the crustal structure have been calculated at the broad-band earthquake observatories of Korea Meteorology Administration (KMA) using the teleseismic deata collected during the period from 2000 to 2001. Maximum variation in the relative travel-time residuals is almost 1.5 seconds Azimuthal variation in the travel-time residuals is observed to indicate the existence of lateral P velocity heterogeneity beneath the stations with velocity contrasts of -4~4%. The estimated average travel-time delays are ranging from 0.05 to 0.3 seconds at the stations including Seoul, Chuncheon, Kanneung, Uljin, and Ulleung Island showing slow velocity contrasts of 0~4% P through the crust. Faster velocity contrasts of 0~4% have been observed at the stations including Seosan, Taejeon, Daegu, Seoguipo, and Busan showing average travel-time delays ranging from -0.05 to -0.3 seconds.

  • PDF

Sonic Velocity Determination using Data from Monopole and Dipole Sources (음파검층에서의 속도결정 - monopole및 dipole소스의 비교 -)

  • Kong, Nam-Young;Lee, Sung-Jin;Zhao, Weijun;Kim, Yeoung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.225-231
    • /
    • 2006
  • As a study of efficient velocity analysis in sonic log, several preexisting techniques have been adopted to the sonic data taken from model borehole in Kangwon National University, and the results were compared. For the data taken from monopole source, Slowness-Time Coherence method which is a common technique for nondispersive wave was used. For the data taken from dipole source, conventional STC and Tang's method(Tang et al., 1995) were used. From the good matches in the P and Stoneley wave velocities, we could confirm the effectiveness of STC computation. We also could find that shear velocity obtained from Tang's method were exactly matched with shear velocity obtained from monopole source, and that the velocity were within the range of S wave velocity values obtained from conventional STC application to dispersive flexural waves.

  • PDF

Efficient R Wave Detection based on Subtractive Operation Method (차감 동작 기법 기반의 효율적인 R파 검출)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.945-952
    • /
    • 2013
  • The R wave of QRS complex is the most prominent feature in ECG because of its specific shape; therefore it is taken as a reference in ECG feature extraction. But R wave detection suffers from the fact that frequency bands of the noise/other components such as P/T waves overlap with that of QRS complex. ECG signal processing must consider efficiency for hardware and software resources available in processing for miniaturization and low power. In other words, the design of algorithm that exactly detects QRS region using minimal computation by analyzing the person's physical condition and/or environment is needed. Therefore, efficient QRS detection based on SOM(Subtractive Operation Method) is presented in this paper. For this purpose, we detected R wave through the preprocessing method using morphological filter, empirical threshold, and subtractive signal. Also, we applied dynamic backward searching method for efficient detection. The performance of R wave detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41% in R wave detection.

A Study for measurement method of P-wave duration in Paroxysmal Atrial Fibrillation(PAF) subjects (발작성 심방세동 환자의 P파 간격 측정 방법에 관한 연구)

  • Lee, J.Y.;Yeo, H.S.;Han, W.T.;Kim, I.Y.;Lee, B.C.;Kim, J.S.;Mi, J.S.;Seo, J.D.;Lee, W.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.181-182
    • /
    • 1998
  • In previous study for correlation between P-wave Signal Averaged Electrocardiography (SAECG) and Paroxysmal Atrial Fibrillation (PAF) subjects, we showed that the duration of P-wave in subjects is longer than in controls. In this respect, the P-wave SAECG is a new method proving to be an accurate and independent noninvasive marker for the risk of PAF. To prove this suggestion, accurate detection and alignment of P-wave are indispensible. In previous study, we measured P-wave duration by manual. So it was not accurate and consistent. To measure the P-wave duration accurately and automatically, we have developed an automatic algorithm for P-wave duration measurement. We showed that the duration of P- wave in the subjects is longer than in controls with this algorithm.

  • PDF

P Wave Velocity Anisotropy and Microcracks of the Pochon Granite Due to Cyclic Loadings (압축피로에 의한 포천화강암의 미세균열 발달과 P파속도 이방성)

  • Kim, Yeonghwa;Jang, Bo-An;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 1997
  • P wave velocities of core samples from the Pocheon granite were measured before and after applications of cyclic loading. Then. distribution of the pre-existing microcracks and microcracks developed due to the cyclic loading was investigated by analyzing P wave velocity anisotropies and microscopic observations from thin sections. Anisotropy constants were calculated with three different ways: (1) $C_A$ between the maximum and the minimum velocities, (2) $C_AI$ between velocities measured along the axial direction and the average of six velocities measured in the planes perpendicular to the loading axis (rift plane) and (3) $C_AII$ between the maximum and the minimum velocities measured in the plane perpendicular to the loading axis. Among anisotropy constants. $C_AI$ was the most effective anisotropy constant to identify the rift plane whose orientation is parallel to the pre-existing microcracks as well as the distribution of stress induced microcracks. $C_AI$ decreased after cyclic loading and the relationship between $C_AI$ and number of cycles shows comparatively coherent negative trends. indicating that stress induced microcracks are aligned perpendicular to the orientation of pre-existing microcracks and that the amounts are proportional to the number of loading cycles. The difference of anisotropy constants before and after cyclic loading was effective in delineating the level of cracks and we called it Induced Crack Index. Velocity measurements and microscopic observations show that anisotropy was caused mainly due to microcracks aligned to a particular direction.

  • PDF

Acoustic Full-waveform Inversion using Adam Optimizer (Adam Optimizer를 이용한 음향매질 탄성파 완전파형역산)

  • Kim, Sooyoon;Chung, Wookeen;Shin, Sungryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.202-209
    • /
    • 2019
  • In this study, an acoustic full-waveform inversion using Adam optimizer was proposed. The steepest descent method, which is commonly used for the optimization of seismic waveform inversion, is fast and easy to apply, but the inverse problem does not converge correctly. Various optimization methods suggested as alternative solutions require large calculation time though they were much more accurate than the steepest descent method. The Adam optimizer is widely used in deep learning for the optimization of learning model. It is considered as one of the most effective optimization method for diverse models. Thus, we proposed seismic full-waveform inversion algorithm using the Adam optimizer for fast and accurate convergence. To prove the performance of the suggested inversion algorithm, we compared the updated P-wave velocity model obtained using the Adam optimizer with the inversion results from the steepest descent method. As a result, we confirmed that the proposed algorithm can provide fast error convergence and precise inversion results.

Considerations on the Difficulties in Velocity Logging in the Near Surface Environments (천부 지반 환경에서 속도검층 난제들에 대한 고찰)

  • Jo, Churl-Hyun;Byun, Joong-Moo;Hwang, Se-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 2006
  • Cares should be taken when performing the P and S wave velocity loggings in engineering and environmental fields. Some of them are the effect of casing, which is installed to prevent the borehole collapsing when the drilling is done on the loose ground such as soil and/or soft rock, and the discrepancy of the velocities of the same media according to the difference of the source wave frequency spectrum. The elastic moduli obtained from the P and S wave velocity logging have the dynamic characteristics. To overcome these difficulties, the following suggestions are recommended; (1) develop and apply a careful drilling technique that can keep the borehole wall without a casing, and (2) apply the logging methods with the suitable frequency bandwidth for the object of the velocity logging. It is important to make the aseismological engineers understand the difference between the dynamic elastic moduli and the static ones obtained from mechanical test, and to advise them to use the information properly.

The Classification of Arrhythmia Using Similarity Analysis Between Unit Patterns at ECG Signal (ECG 신호에서 단위패턴간 유사도분석을 이용한 부정맥 분류 알고리즘)

  • Bae, Jung-Hyoun;Lim, Seung-Ju;Kim, Jeong-Ju;Park, Sung-Dae;Kim, Jeong-Do
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.105-112
    • /
    • 2012
  • Most methods for detecting PVC and APC require the measurement of accurate QRS complex, P wave and T wave. In this study, we propose new algorithm for detecting PVC and APC without using complex parameter and algorithms. Proposed algorithm have wide applicability to abnormal waveform by personal distinction and difference as well as all sorts of normal waveform on ECG. To achieve this, we separate ECG signal into each unit patterns and made a standard unit pattern by just using unit patterns which have normal R-R internal. After that, we detect PVC and APC by using similarity analysis for pattern matching between standard unit pattern and each unit patterns.

Geoacoustic Characteristics of P-Wave Velocity in Donghae City - Ulleung Island Line, East Sea: Preliminary Results (동해시-울릉도 해저 측선에서의 P파 속도 지음향 특성: 예비 결과)

  • Ryang, Woo-Hun;Kwon, Yi-Kyun;Jin, Jae-Hwa;Kim, Hyun-Tae;Lee, Chi-Won;Jung, Ja-Hun;Kim, Dae-Choul;Choi, Jin-Hyuk;Kim, Young-Gyu;Kim, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.44-49
    • /
    • 2007
  • Donghae City - Ulleung Island Line (DC-UI Line) is a representative line for underwater and geoacoustic modeling in the middle western East Sea. In this line, an integrated model of P-wave velocity is proposed for a low-frequency range target (<200 Hz), based on high-resolution seismic profiles (2 - 7 kHz sonar and air-gun), shallow and deep cores (grab, piston, and Portable Remote Operated Drilling), and outcrop geology (Tertiary rocks and the basement on land). The basement comprises 3 geoacoustic layers of P-wave velocity ranging from 3750 to 5550 m/s. The overlying sediments consist of 7 layers of P-wave velocities ranging from 1500 to 1900 m/s. The bottom model shows that the structure is very irregular and the velocity is also variable with both vertical and lateral extension. In this area, seabed and underwater acousticians should consider that low-frequency acoustic modeling is very range-dependent and a detailed geoacoustic model is necessary for better modeling of acoustic propagation such as long-range surveillance of submarines and monitoring of currents.