• Title/Summary/Keyword: P&S-wave velocity

Search Result 184, Processing Time 0.026 seconds

A Study on the Characteristics of Dynamic Elastic Modulus in Granite (화강암 암반의 암질에 따른 동탄성 특성치에 관한 연구(경기, 경남지역 중심으로))

  • Lee, Byok-Kyu;Lee, Su-Gon;Lim, Bak-Man
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.386-392
    • /
    • 2008
  • Recently, an earthquake-resistant has become essential to the large-scale structures at Gyeonggi and Gyeongsangnam province in Korea, but it is generally compared the measured data with foreign references because of the lack of the research data. It will be presented the characteristics of suitable dynamic elastic modulus in Korean geology, which characteristics are characterized the seismic wave velocities($V_p,\;V_s$) and correlation with dynamic elastic modulus($E_d,\;G_d\;K_d$) by each rock type of Korean granite, because it is very different between the values of foreign references and Korean geological characteristics.

Quantification of Nerve Viscosity Using Shear Wave Dispersion Imaging in Diabetic Rats: A Novel Technique for Evaluating Diabetic Neuropathy

  • Feifei Liu;Diancheng Li;Yuwei Xin;Fang Liu;Wenxue Li;Jiaan Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.237-245
    • /
    • 2022
  • Objective: Viscoelasticity is an essential feature of nerves, although little is known about their viscous properties. The discovery of shear wave dispersion (SWD) imaging has presented a new approach for the non-invasive evaluation of tissue viscosity. The present study investigated the feasibility of using SWD imaging to evaluate diabetic neuropathy using the sciatic nerve in a diabetic rat model. Materials and Methods: This study included 11 diabetic rats in the diabetic group and 12 healthy rats in the control group. Bilateral sciatic nerves were evaluated 3 months after treatment with streptozotocin. We measured the nerve cross-sectional area (CSA), nerve stiffness using shear wave elastography (SWE), and nerve viscosity using SWD imaging. The motor nerve conduction velocity (MNCV) was also measured. These four indicators and the histology of the sciatic nerves were then compared between the two groups. The performance of CSA, SWE, and SWD imaging in distinguishing the two groups was assessed using receiver operating characteristic (ROC) analysis. Results: Nerve CSA, stiffness, and viscosity in the diabetic group was significantly higher than those in the control group (all p < 0.05). The results also revealed a significantly lower MNCV in the diabetic group (p = 0.005). Additionally, the density of myelinated fibers was significantly lower in the diabetic group (p = 0.004). The average thickness of the myelin sheath was also lower in the diabetic group (p = 0.012). The area under the ROC curve for distinguishing the diabetic neuropathy group from the control group was 0.876 for SWD imaging, which was significantly greater than 0.677 for CSA (p = 0.030) and 0.705 for SWE (p = 0.035). Conclusion: Sciatic nerve viscosity measured using SWD imaging was significantly higher in diabetic rats. The viscosity measured using SWD imaging performed well in distinguishing the diabetic neuropathy group from the control group. Therefore, SWD imaging may be a promising method for the evaluation of diabetic neuropathy.

Geophysical Study on the Ultramafic Rocks of Chungnam Province, Korea: Characteristics of Seismic Velocity (충남지역 초염기성 암체의 지구물리학적 연구: 탄성파 속도 특성)

  • Suh, Man-Cheol;Woo, Young-Kyun;Song, Suck-Hwan;Tianyao, Hao
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2000
  • Compressional and shear wave velocities (Vp and Vs) and densities have been measured for serpentinite, amphibolite, amphibole and biotite schist, and gneiss from western part of Chungnam Province at room temperature. Ranges of the density are 2.6${\sim}$2.86g/cm$^3$ for serpentinite, 2.25${\sim}$2.81g/cm$^3$ for talc, and 2.74${\sim}$3.07g/cm$^3$ for metamorphic rocks. Of these rocks, talc shows wider ranges than serpentinite and amphibolites due to its metamorphic process from serpentinite. Values of Vp and Vs are 5719${\sim}$6062m/s and 2898${\sim}$3351m/s for serpentinites, 4019${\sim}$5478m/s and 2241/${\sim}$2976m/s for talc, 5375${\sim}$6372m/s and 3042${\sim}$3625m/s for amphibolite, 5290${\sim}$5499m/s and 2968${\sim}$3137m/s for schist, and 4788m/s and 2804m/s for gneiss, respectively. Velocity of P wave increases 1.47 times faster than S wave with increase of density. The results of seismic velocity measurement show anisotropy, higher velocity across than along the schistocity of rocks, especially in metamorphic rocks. This fact indicates that there were regional metamorphism related with tectonic forces. Values of seismic velocity increase with increasing pressure from 20 MPa to 70 MPa, especially in metamorphic rocks. Overall recalculated Vp and Vs values suggest that the serpentinite indicates for upper mantle in the respects of seismic characteristics, in spite of high degree of serpentinization. In addition, those of the amphibolite do for low crust, and gneiss and schist for upper crust.

  • PDF

Wave-Induced Soil Response around Submarine Pipeline (파랑작용에 의한 해저파이프라인 주변지반의 응답특성)

  • Hur, Dong-Soo;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.31-39
    • /
    • 2007
  • Recently, the nonlinear dynamic responses among waves, submarine pipeline and seabed have become a target of analyses for marine geotechnical and coastal engineers. Specifically, the velocity field around the submarine pipeline and the wave-induced responses of soil, such as stress and strain inside seabed, have been recognized as dominant factors in discussing the stability of submarine pipeline. The aim of this paper is to investigate nonlinear dynamic responses of soil in seabed, around submarine pipeline, under wave loading. In order to examine wave-induced soil responses, first, the calculation is conducted in the whole domain, including wave field and the seabed, using the VOF-FDM method. Then, velocities and pressures, which are obtained on the boundary between the wave field and the seabed, are used as the boundary condition to compute the wave-induced stress and strain inside seabed, using the poro-elastic FEM model, which is based on the approximation of the Biot's equations. Based on the numerical results, the characteristics of wave-induced soil responses around submarine pipeline are investigated, in detail, inrelation to relative separate distance of the submarine pipeline from seabed. Also, the velocity field around the submarine pipeline is discussed.

P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data (해저면 광각 탄성파 탐사자료를 이용한 BSR 부근의 P파 속도 분석)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 2009
  • In April 2008, KIGAM carried out an ocean-bottom seismometer (OBS) survey in the central Ulleung Basin where strong bottom simulating reflectors (BSRs) were revealed from previous surveys and some gas-hydrate samples were retrieved by direct sampling. The purpose of this survey is to estimate the velocity structure near the BSR in the gas hydrate prospect area using wide-angle seismic data recorded on the ocean-bottom seismometers. Along with the OBS survey, a 2-D seismic survey was performed whereby stratigraphic and preliminary velocity information was obtained. Two methods were applied to wide-angle data for estimating P wave velocity; one is velocity analysis in the $\tau$-p domain and the other is seismic traveltime inversion. A 1-D interval velocity profile was obtained by the first method, which was refined to layered velocity structure by the latter method. A layer stripping method was adopted for modeling and inversion. All velocity profiles at each OBS site clearly show velocity reversal at BSR depths due to the presence of gas hydrates. In addition, we could confirm high velocity in the column/chimney structure.

Correlation between Engineering Properties of Rocks in Korea (한반도의 암종별 공학적 특성의 상관성 분석)

  • Kim Gyo-Won;Kim Su-Jeong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.59-68
    • /
    • 2006
  • About 6,000 rock properties obtained from laboratory tests are collected from various projects conducted in Korea Peninsular and the distribution of the properties such as uniaxial compressive strength, cohesion, kriction angle, tangential strength, Young's modulus, p-wave velocity and S-wave velocity are analysed and correlated each other. The empirical equations deduced with 84% of reliability would be useful for preliminary design of geo-structures.

Predicting the Uniaxial Compressive Strength and Young's Modulus of Rocks using Ultrasonic Velocity (초음파속도를 이용한 암석의 일축압축강도와 탄성계수 예측)

  • Choi, Gilhyun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.53-58
    • /
    • 2014
  • The uniaxial compressive strength and Young's modulus of intact rocks are the most important analytical parameters for design of rock mass structures. But the preparation of the samples for uniaxial compressive test is a hard and time consuming task. By using ultrasonic test, engineers can predict the analytical parameters that is the uniaxial compressive strength and Young's modulus. The uniaxial compressive test and ultrasonic test were carried out 115 samples of igneous rocks, 74 samples of metamorphic rocks and 55 samples of sedimentary rocks and, after regression analysis of the test results, best fit equations for predicting the uniaxial compressive strength and Young's modulus are proposed. In order to obtain a better correlations coefficient between uniaxial compressive strength and P-wave velocity, the P-wave velocity were multiplied by density values. The proposed equations for predicting uniaxial compressive strength and Young's modulus using ultrasonic test provide reliable results.

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF