• Title/Summary/Keyword: P&O MPPT

Search Result 99, Processing Time 0.027 seconds

The characteristic analysis of POS (PV Output Sensorless) MPPT based 3 phase grid connected PV system (PV Output Sensorless(POS) MPPT법이 적용된 3상 계통연계형 태양광 발전시스템의 특성해석)

  • Park, Sang-Soo;Kim, Gyeong-Hun;Kim, Sang-Yong;Jang, Seong-Jae;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1081-1082
    • /
    • 2008
  • Photovoltaic (PV) power generation system has been widely studied as a clean and renewable power source. The purpose of this study is to keep the output power of photovoltaic cells maximum under any weather conditions. There are so many MPPT (Maximum Power Point Tracking) methods. P&O method has been used as a key MPPT method, both voltage and current coming out from PV array have to be feedback in the method. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. In order to reduce the feedback components, POS MPPT control method was proposed by the authors. In this paper, the authors apply the POS MPPT control method to three phase PCS system. And the effectiveness of the proposed control scheme is demonstrated through PSCAD/EMTDC simulation.

  • PDF

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

Seamless Transfer Method of MPPT for Two-stage Photovoltaic PCS (태양광 발전 시스템의 무순단 MPPT 운전 모드 절체 기법)

  • Park, Jong-Hwa;Jo, Jongmin;An, Hyunsung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.233-238
    • /
    • 2018
  • This paper proposes a seamless MPPT operation mode transfer method of photovoltaic system. The photovoltaic system consists of a DC-DC boost converter, a DC-Link, and a 3-level neutral point clamp (NPC) type inverter. The PV voltage fluctuates due to the output characteristics of the solar pane1 depending on the irradiation amount and the temperature. The photovoltaic system requires seamless MPPT mode transfer method that the discontinuity does not occur in order to supply the stable power to system without affecting the fluctuation of the PV voltage. MPPT operation is divided into two modes by the voltage reference. Under the condition that the PV voltage is below 650V, the DC-DC boost converter performs MPPT through duty control based on perturb & observe (P&O) method, and the inverter conducts DC-link voltage and grid current controls in synchronous reference frame. On the other hand, when the PV voltage exceeds above 650V, inverter performs MPPT in accordance with the variation of DC-link voltage control while the converter stops operating. Two MPPT operation modes is smoothly transferred through the proposed method that DC-link voltage or grid current commands are appropriately adjusted from the certain criteria. The feasibility of the MPPT operation mode transfer method is verified using a 10kW solar photovoltaic system, experimental results have good performances that the fluctuation of PV current is reduced to 100%.

Transformerless Three-Phase Line-connected Photovoltaic PCS (무변압기형 3상 계통연계 PV PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper, the transformerless three-phase line-connected PV PCS (photovoltaic power conditioning system) is proposed. An improved P&O (perturb and observe) MPPT (maximum power point tracking) algorithm that prevents local maximum power point tracking is proposed. By controlling the three-phase line-connected voltage source inverter using outer DC-link voltage controller, inner current controller and microcontroller friendly simplified space vector modulation (SVM) method, a unity power factor is achieved. An algorithm is suggested to control the DC-link voltage faster and more correctly for the increase system stability and power factor. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed algorithms and controllers is proved by experiments.

Power Conditioning System for a Grid Connected PV Power Generation Using a Quasi-Z-Source Inverter

  • Park, Jong-Hyoung;Kim, Heung-Geun;Nho, Eui-Cheol;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.79-84
    • /
    • 2010
  • This paper presents a grid connected photo-voltaic system using a quasi-Z-source inverter (QZSI) for power stage reduction. The power stage can be reduced because of an additional shoot-through stage which is a characteristic of QZSI. Therefore, by utilizing a QZSI the system's efficiency can be increased. In this paper, for applying a QZSI to a PV system, control methods such as maximum power point tracking (MPPT), point of common coupling (PCC) current control and PWM are studied and verified through simulation and experiment. In order to explain the above controllers, the characteristics of a QZSI are first analyzed. Then the MPPT control technique with a modified P&O method, the PCC current control for the regulation of the dc-link capacitor voltage and the PWM methods for the proposed system are explained. The feasibility of the proposed algorithm is verified through simulation and experiment with a 3kW system.

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

Analog MPPT Tracking MPP within One Switching Cycle for Photovoltaic Applications (One Switching Cycle 내에 최대전력점을 추종하는 태양광 발전의 아날로 MPPT 제어 시스템)

  • Ji, Sang-Keun;Kwon, Doo-Il;Yoo, Cheol-Hee;Han, Sang-Kyoo;Roh, Chung-Wook;Lee, Hyo-Bum;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Tracking the Maximum Power Point(MPP) of a photovoltaic(PV) array is usually an essential part of a PV system. The problem considered by MPPT techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output PMPP under a given temperature and irradiance. The MPPT control methods, such as the perturb and observe method and the incremental conductance method require microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme will track the MPP very fast and its hardware implementation is so simple, compared with the conventional techniques. The new algorithm has successfully tracked the MPP, even in case of rapidly changing atmospheric conditions, and Has higher efficiency than ordinary algorithms.

Development of Solar Converter for Battery Charging in Excavator (건설장비용 태양광 에너지 충전 컨버터 개발)

  • LEE, Seung-Jun;OH, Kwang-Ho;LEE, Sang-Hyeok
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.360-361
    • /
    • 2018
  • 현재 건설 중장비에는 암전류에 의한 배터리 방전 문제가 발생하고 있고 이에 태양광 충전 시스템을 필요로 한다. 본 논문에서는 6톤급 중장비에 적용 가능한 태양광 컨버터 개발에 대한 내용을 다루며 태양전지의 용량 선정, MPPT 적합성 검토, 독립형 충전 시스템 구현, 배터리 방전 방지 기능의 실효성을 확인한다. PSIM 시뮬레이션을 통해 MPPT 및 충전 로직을 검증하고 실험을 통해 40W급 충전 시스템의 P&O 알고리즘 성능을 확인한다.

  • PDF

A Study on the MPPT Algorithm for Buoy (브이용 태양광 최대 전력 추적 알고리즘에 관한 연구)

  • Jo, Kwan-Jun;Jung, Sung-Young;Bae, Soo-Young;Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.588-594
    • /
    • 2009
  • The maximum power point operation point(MPPOP) of photovoltaic(PV) power generation systems changes with varying atmospheric conditions such as temperature, solar radiation. For achieving a high efficiency in PV system, it is very important for PV system to track the MPPOP correctly according to operation condition. Although the MPPT(maximum power point tracking) algorithm which applied P&O(Perturbation & Observation) or IncCnd(Incremental Conductance) algorithm tracks the MPPOP efficiently, its efficiency drops noticeably in case that the incidence angle of PV panel on buoy changes rapidly. To solve this problem, this paper proposes maximum power point searching and tracking algorithm(MPPST). The proposed algorithm set the specific area and measures the PV voltage at the same interval. The proposed algorithm have been obtained high efficiency than P&O algorithm through ocean experiment.

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.