• Title/Summary/Keyword: P&O

Search Result 14,791, Processing Time 0.043 seconds

Synthesis of p-Acetamidobenzenesulfonamide Containing O, O'-Diethyl DL-1-Aminobenzylphosphonate and Their Derivatives (O, O'-Diethyl DL-1-Aminobenzylphosphonate와 그의 유도체들을 포함한 p-Acetamidobenzenesulfonamide의 합성)

  • Young Suk Kim;Suk In Hong;Yong Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.294-301
    • /
    • 1983
  • Six new compounds of p-acetamidobenzenesulfonamides which contain O, O'-diethyl-1-aminobenzylphosphonate and their derivatives were prepared: O, O'-diethyl N-(p-acetamidobenzenesulfonyl) aminobenzylphosphonate, N-(p-acetamidobenzenesulfonyl) aminobenzylphosphonic acid, O,O'-diethyl N-[N-(p-acetamidobenzenesulfonyl) glycyl] aminobenzylphosphonate, O,O'-diethyl N-[N-(p-acetamidobenzenesulfonyl)-DL-alanyl] aminobenzylphosphonate, O,O'-diethyl N-[N-(p-acetamidobenzenesulfonyl)-L-leucyl] aminobenzylphosphonate, and O,O'-diethyl N-[N-(p-acetamidobenzenesulfonyl)-L-phenylalanyl]aminobenzylphosphonate. All the compounds were obtained as white crystals and characterized by means of elemental analysis and infrared spectroscopy.

Electrochemical properties of $Li_2O-P_2O_5-V_2O_5$ Glass-ceramics by Addition of $Bi_2O_3$ ($Bi_2O_3$첨가에 따른 $Li_2O-P_2O_5-V_2O_5$ 결정화유리의 전기화학적 특성변화)

  • Son, Muong-Mo;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.797-800
    • /
    • 2002
  • Instead of a solution process producing amorphous $LiV_3O_8$ form, we prepared Lithium vanadate glass by melting $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ composition in pt. crucible and by quenching on the copper plate. From the crystallization of $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$, we could abtain glass-ceramics having crystal phase, LiV3O8 from glass matrix. The material heat-treated at lower-temperature, $250^{\circ}C$ had less crystalline and lower capacity, But the material heat-treadted at higher-temperature, $330^{\circ}C$ had higher capacity and $Li_2O-P_2O_5-V_2O_5$ glass-ceramics had higher capacity than $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ glass-ceramics.

  • PDF

Properties of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 물성)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.289-298
    • /
    • 1993
  • Properties in terms of the variation of the glass compositions, which were density (p), molar volume(Vm), atom/ion packing density (Dp), refractive index (nD), transformation temperature (Tg), dilatometric softening point (Td), thermal expansion coefficient (α), Young's modulus (E), and knoop hardness (KHN) were investigated in CaO-SiO2 glasses and CaO-P2O5-SiO2 glasses containing less than 10mole% of P2O5. Those properties were measured by density measurement kit, Abbe refractometer, dilatometer, ultrasonic pulse echo equipment, and micro hardness tester. When CaO content was increased in CaO-SiO2 glasses, p, Dp, nD, Tg, Td, α, E and KHN were increased, while Vm was decreased. When P2O5 was added to the CaO-SiO2 glasses with constant CaO/SiO2 ratio as 1.07, p, Dp, nD, Tg, Td, α, E and KHN were decreased, while Vm was increased. When the amount of P2O5 in glasses was kept constant, the changes of the properties with variation of CaO content in the CaO-P2O5-SiO2 glasses were very similar to those of CaO-SiO2 glasses. These phenomena could be explained by the structural role of P2O5 in the CaO-P2O5-SiO2 glasses, which was polymerization of siicate structures and resulted in [PO4] monomer structure in glasses. Due to this structural characteristics, the bond strength and packing density were changed with compositions. Proportional relationships between 1) np and Dp, 2) Tg, Td, α and CaO content, 3) E and Vm-1, and 4) KHN and P2O5 content were evaluated in this investigation.

  • PDF

A Study of Structure and Thermal Properties of K2O·CaO·P2O5 Glasses (K2O·CaO·P2O5계 유리의 열적특성과 구조분석)

  • Yoon, Young-Jin;Yoon, Tae-Min;Lee, Yong-Soo;Kang, Won-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Various composition of $K_2O{\cdot}CaO{\cdot}P_2O_5$ glasses were studied by melting process to identify glass forming region. Thermal properties were observed by DSC and TG-DTA, structural properties were investigated by FT-IR and Raman Spectroscopy. The glass transition temperature (Tg) and softening temperature (Ts) were decreased with increasing $K_2O\;and\;P_2O_5$ contents. The basic structural unit of phosphate glasses is the $PO_2\;and\;PO_4^{3-}$ groups to make a cross-link and P-O-P group to form skeleton structure. As CaO content was increased, the P-O-P field strength in these glass was increased and intensity of $PO_2\;and\;PO_4^{3-}$ stretch was decreased.

The Effects of the Structural Characteristics on Properties of Their Bridging OH Groups for $AlPO_4-5$ Molecular Sieve : MNDO Calculations ($AlPO_4-5$ 분자체에서 가교 OH 그룹의 성질에 대한 구조 특성 효과 : MNDO 계산)

  • Son, Man-Shick;Lee, Chong-Kwang;Paek, U-Hyon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.787-792
    • /
    • 1993
  • Semiempirical MNDO calculations are employed to study relation properties on bridging OH group with Al-O(P-O) bond length and Al-O-P bond angle of structural characteristics using birdging $(OH)_3AlOP(OH)_3$ and $(OH)_3AlOHP(OH)_3^+$ model culster. We know that the O-H bond dissociation energy of bridging OH group is increased with increasing Al-O(P-O) bond length and decreasing Al-O-P bond angle. The bridging OH group is formed into enlarged Al-O(P-O) bond length and shortened Al-O-P bond angle in bridging oxygen atom by a hydrogen migration. The negative net charge of bridging oxygen atom is increased with longer Al-O-P bond angle, while the positive net charge is decreased with longer Al-O-P bond angle.

  • PDF

Bioactivity of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 생체활성)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.433-440
    • /
    • 1993
  • The bioactivity of glasses in the CaO-SiO2 system and CaO-P2O5-SiO2 system with less than 10mol% of P2O5 was investigated by in vitro test in simulated body flood(SBF). The formation of Ca.P film and hydroxyapatite on the surface of glasses after in vitro test was analysed by X-ray photoelectron spectoscopy (XPS), fourier transform infrared reflection spectroscopy (FT-IRRS), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) observation. In the early stage of Ca.P film formation after in vitro test for CaO-SiO2 and CaO-P2O5-SiO2 glasses, the rate of Ca.P film formation on the surface of the glasses was dependent of structural parameter (Y) evaluated from the glass composition. First, in the case of the glasses having Y value below 2, Ca.P film and SiO2-rich layer were formed simultaneously, and there were no differences of the rate of Ca.P film formation in terms of the Y values. Second, in the case of the glasses having Y value above 2, the SiO2-rich layer was formed, and then Ca.P.Si mixed layer was formed in the silica gel structure of the SiO2-rich layer, and finally the Ca.P film on the surface of SiO2-rich layer. The rate of Ca.P film formation delayed as the Y values increased. The rate of hydroxyapatite formation of glasses (the rate of transformation from Ca.P film to hydroxyapatite) seems to be propotional to the rate of Ca.P film formation and Y value. The rate of hydroxyapatite formation of glasses belonging to the second group was delayed as structural parameter increased, and the hydroxyapatite crystal showed spherical growth in the early reaction stage, and then showed silkworm-like linear growth as the reaction time increased.

  • PDF

Formation and Structure of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 형성 및 구조)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.729-738
    • /
    • 1992
  • The glass formation and structural change with the glass compositions were investigated in the CaO-P2O5-SiO2 system with less than 40 wt% of P2O5. The glass formation range was determined by XRD, SEM and EDS techniques for water quenched specimens. The structural analyses were made for binary CaO-SiO2 glasses and ternary CaO-P2O5-SiO2 glasses by using FT-IR and Raman spectroscopy. The glass formation was affected by CaO/SiO2 mole ratio, P2O5 content and primary crystalline phase. The stable glass formation range was found when the transformed CaO/SiO2 mole ratio (new factor derived from structural changes) was in the range of 0.72~1.15 with less than 10 mol% of P2O5. The structural analyses of CaO-SiO2 glasses indicated that as the CaO/SiO2 ratio was increased, the nonbridging oxygens in the structural unit of the glasses were increased. With addition of P2O5 to CaO-SiO2 glasses, the P2O5 enhanced the polymerization of [SiO4] tetrahedra unit in CaO-SiO2 glasses, which contained a large portion of nonbridging oxygen. The phosphate eliminated nonbridging oxygens from silicate species, forcing polymerization of silicate structures and produced in [PO4] monomer in glasses. When added P2O5 was kept constant, the structural change with various CaO/SiO2 ratio was very similar to that of CaO-SiO2 glasses.

  • PDF

Crystallization and charg-discharge properties of $Li_2O-P_2O_5-V_2O_5$-gless as Cathode material (정극재료로서 $Li_2O-P_2O_5-V_2O_5$ 유리의 결정화와 충방전 특성)

  • Son, Myeng-Mo;Lee, Heon-Su;Song, Hee-Woong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.157-159
    • /
    • 2000
  • Vanadate glass in the $Li_2O-P_2O_5-V_2O_5$ system with 60mol% $V_2O_5$ was prepared by melting the bath in pt. crucible followed by quenching on the copper plate. We found that $Li_2O-P_2O_5-V_2O_5$ glass ceramics obtained from nucleation of $Li_2O-P_2O_5-V_2O_5$ glass showed significantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_8$. In the present paper, We describe the charge/discharge properties during crystallization process and find the best crystallization condition of $Li_2O-P_2O_5-V_2O_5$ glass as cathode material. The Charge and discharge capacity of $Li_2O-P_2O_5-V_2O_5$ glass was about 220mAh/g for the cell heat-treated at $250^{\circ}C$ for 2.5hr.

  • PDF

Crystallization and Electrochemical properties of $Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ Glasses ($Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ 유리의 결정화에 따른 전기 화학적 특성변화)

  • 손명모;이헌수;구할본;김상기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.523-527
    • /
    • 2000
  • Vanadate glasses in the Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ system containing 10mo1% glass former, P$_2$O$_{5}$ were prepared by melting the batch in pt. crucib1e followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics obtained from nucleation of glass showed significantly higher capacity and longer cycle life than conventionally made crystalline LiCoO$_2$, LiNiO$_2$and LiV$_3$O$_{8}$. In the present paper, We describe electro-chemical properties during crystallization process and find the best crystallization condition of Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass as cathod material. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics shows superior rechargeable capacity of 220 mAh/g in the cycling between 2.0 and 3.9V.etween 2.0 and 3.9V.

  • PDF

Crystallization and Electrical Conductivity of $CuO-P_{2}O_{5}-V_{2}O_{5}$ Glass for Solid-state Electrolyte (고체전해질용 $CuO-P_{2}O_{5}-V_{2}O_{5}$유리의 결정화와 전기전도도)

  • 손명모;이헌수;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1018-1021
    • /
    • 2001
  • 1018-1021 The CuO-P$_2$O$_{5}$ containing P$_2$O$_{5}$ as glass-former were prepared by press-quenching method on the copper plate. By post-heat treatment of these glasses, the CuO-P$_2$O$_{5}$ -V$_2$O$_{5}$ -g1ass ceramics was obtained and the crystallization behavior and dc conductivities were investigovted. The heat-treated glass-ceramics decreased in electrical conductivity by the order of 10$^1$ compared to amorphous glass. The linear relationship between In($\sigma$T) and T$^{-1}$ indicated that electrical conduction in CuO-P$_2$O$_{5}$ -V$_2$O$_{5}$ -gass occurred by a small polaron hopping.

  • PDF