• Title/Summary/Keyword: Ozonizer

Search Result 114, Processing Time 0.022 seconds

Characteristics of Vaccum Variation Type Ozonizer of Internal Electrode (내부전극의 전공도 변화형 오존발생기의 특성)

  • 이창호;전병준;김영재;이광식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.387-391
    • /
    • 2003
  • In this paper, a double cylindrical type superposed silent discharge type ozonizer which internal electrode can be produced a vacuum has been designed and manufactured Discharge and ozone generation characteristics have been investigated in accordance with output voltage of power supply, flow-rate, discharge power and vacuum of internal electrode.

  • PDF

Effect of Temperature on the Performance Characteristics of a Pin-Cylinder Discharge Type Ozonizer

  • Md. Fayzur Rahman;Chun, Byung-Joon;Lee, Kwang-Sik;Lee, Dong-In
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.201-207
    • /
    • 2002
  • A Pin-Cylinder discharge type ozonizer was designed and manufactured. The increase or decrease of temperature greatly influences on the characteristics of ozone generation of a discharge type ozonizer. The characteristics of ozone concentration ( $O_{3con}$), ozone generation ($_{3g}$) and ozone yield .ate ($_{3Y}$) of the ozonizer were investigated by varying the gas flow rate (Q), the discharge power ($_{Wd}$ ) and the temperature (T). At T = 20($^{\circ}C$), the values of ( $O_{3con}$) were found as 7800,5300,3000 and 2300(ppm) at Q=1,2,4 and 6(1/min) respectively. The corresponding values of ( $O_{3g}$) were found as 917, l247,1411 and 1623(mg/h) and those of ( $O_{3Y}$) were 93,126,143 and 164(g/kWh) respectively. When the temperature is decreased to -50($^{\circ}C$), the values of ( $O_{3con}$) became 12000,8000,5200 and 3600(ppm) at Q=1,2,4 and 6(1/min) respectively. The corresponding values of 0,9 were obtained as 1411,1882,2446 and 2600(mg/h) and those of ($O_{3Y}$) were 143,190,247 and 2631g/kWh] respectively. Hence as the temperature was decreased from 20 to -50[。C], the efficiencies of ozone generation were increased by 54,51,73 and 60[%] at Q=1,2,4 and 6(1/min) respectively.ctively.

Temperature Dependent Characteristics of a Combined Discharge Type Ozonizer (CDO)

  • Fayzur Rahman;B. J. Chun;Lee, K. S.;Lee, D. I.
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.106-112
    • /
    • 2003
  • A combined discharge type ozonizer was designed and manufactured. The increase or decrease of temperature greatly influences the characteristics of ozone concentration ( $O_{3con}$), ozone generation ( $O_{3g}$) and ozone yield ( $O_{3Y}$) of a discharge type ozonizer. The characteristics of ozone concentration, ozone generation and ozone yield rate were investigated by varying the gas flow rate (Q), the discharge power ( $W_{d}$) and the temperature (T). At T=25[$^{\circ}C$] the values of $O_{3con}$ were found as 5632, 4200, 2500 and l800[ppm] at Q = 1, 2, 4 and 6[l/min] respectively. At the same temperature the corresponding values of $O_{3g}$ were found as 662, 988, 1176 and l270[mg/h] and those of $O_{3Y}$ were found as 67, 102, 119 and 135[g/kWh] respectively. When the temperature is decreased to -50[$^{\circ}C$], the values of $O_{3con}$ were found as 9000, 6700, 4000 and 2800[ppm] respectively at Q = 1, 2, 4 and 6[l/min]. At the same value of temperature the corresponding values of $O_{3g}$ were found as 1220, 1576, 1882 and 2050[mg/h] and those of $O_{3Y}$ were found as 120, 159, 188 and 202[g/kWh] respectively. Hence as the temperature was decreased from 25 to -50[$^{\circ}C$], the efficiencies of ozone generation were increased by 79, 55, 58 and 49[%] respectively at Q = 1, 2, 4 and 6[l/min].]. 6[l/min].].

The Characteristics of a Superposed Discharge Type Ozonizer with Variation of Mesh in Internal Electrode (내부전극 조밀도 변화에 따른 중첩방전형 오존발생기의 특성)

  • Song, Hyun-Jig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.87-93
    • /
    • 2005
  • In order to develope high concentration$\cdot$yield ozonizer, superposed discharge type ozonizer using overlap of silent discharge and internal electrode of mesh type has been designed and manufactured. It consists of three electrodes(central electrode, internal electrode and external electrode) and double gaps(gap between central electrode and internal electrode, gap between internal electrode and external electrode). Therefore, ozone is generated by overlapping silent discharges generated between the gaps respectively for which the AC high voltages applied to the internal electrode and the external electrode has a $180{[^\circ]}$ phase difference and for which the central electrode is a ground Ozone generation characteristics proportional to mesh of internal electrode by increasing of discharge electrode and controlling of discharge power density. As a result, the in maximum ozone concentration, generation, and yield can be obtained 17,720[ppm], 5.4[g/h], and 205[g/kwh] respectively.

Trial Manufacture and Characteristics of a Multi-discharge Type ozonizer(I) (다중방전형 오존발생기의 試作 및 特性(I))

  • Song, Hyeon-Jik;Lee, Gwang-Sik;Park, Won-Ju;Lee, Dong-Heon;Kim, Geum-Yeong;Kim, Lee-Guk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.533-541
    • /
    • 1999
  • Multi-discharge type ozonizer(MDO) using superposed silent discharge has been designed and manufactured. It consists of three electrodes( central electrode, internal electrode, and external electrode ) and double gaps( gap between central electrode and internal electrode, gap between internal electrode and external electrode ). Therefore, ozone is generated by superposing silent discharges generated between the gaps respectively. And the MDO consists of three types of superposed discharge ozonizers according to voltage appling method for each electrode ; A.C. high voltages are applied two of three electrodes with phase difference of 180[˚], the other electrode is a ground. This paper describes that discharge and ozone generation characteristics of MDO which comprising central electrode and internal electrode applied A.C. high voltages with phase difference of 180[˚] respectively, and the grounded external electrode. As a result, the maximum ozone concentration, generation, and yield can be obtained 10208[ppm], 6.4[g/h], and 280[g/kwh] respectively.

  • PDF

Effect of the Change in Electrode Construction for the Improvement of Ozone Characteristic of a Superposed Discharge Type Ozonizer

  • Rahman, Fayzur
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.17-22
    • /
    • 1999
  • In this paper a new discharge type ozonizer comprising the superpose operation of silent and surface discharge is presented. The ozonizer consists of two concentric glass tubes with three type of discharge electrodes : the external electrode(EE), the internal electrode(IE) and the central electrode(CE). By varying the structure of IE and materials of CE, we analyzed the characteristics of ozone related different parameters including $O_{3con}$, $O_{3g}$, and $O_{3Y}$. Using Cu made CE it was found the O3con is higher with Cu tape than that with Cu coil wound IE. At Q = 1[l/ min] the values of O3con were found as 3000[ppm] with Cu tape wound IE and 1898[ppm] with Cu coil wound IE. Then using SUS wire made CE with Cu tape wound IE at Q = 1[ι/ min] the maximum value of O3con was found as 5632[ppm]. It was observed that both $O_{3con}$ and $O_{3y}$ are higher with SUS made CE than that with Cu made CE. The maximum values of $O_{3Y}$ were found as 79[g/kWh] with Cu made CE and 170[g/kWh] with SUS wire made CE.

  • PDF

Analysis of high-frequency resonant Inverter character using efficient ozonizer (고효율 오존생기용 고주파 공진형 인버터의 특성 해석)

  • Kim, Young-Hoon;Hwang, Young-Min;Noh, In-Bae;Kim, Young-Bin;Heo, Tae-Won;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.246-248
    • /
    • 2002
  • This paper presents a high-frequency voltage source inverter for silent corona discharge ozonizer application, which is characterized by the power control based on pulse density modulation (PDM). The PDM inverter produces either a square -wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant do voltage and operating frequency. This results in a wide range of power control in the silent corona discharge load with a strong nonlinear characteristics. And proposed addition circuit for maintain discharge on the center of the airgap. In this paper, schemed equivalent electric circuit of the discharge electrode for simulation. Finally, the effectiveness of this discharge tube character of silent corona ozonizer is investigated in the simulation results.

  • PDF

Development of Ozone Generating System Applying Forward Type High Voltage Pulse Power Supply (Forward형 고압펄스 전원장치를 적용한 오존발생 시스템 의 개발)

  • 김동희;원재선;김경식;이광식;정도영;오승훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.335-342
    • /
    • 2003
  • This paper presents a forward type high voltage pulse power supply for high voltage small current, which can be designed as a simple circuit configuration and managed easily using Power-MOSFET in the view of commercialization. According to the switching frequency, coupling factor(k) and duty ratio(D), the Principle of basic operation and the characteristics of the proposed pulse power supply are estimated. Simulation results have demonstrated the feasibility of the proposed pulse power supply. Also experimental results are presented to verify theoretical discussion with a lamp type ozonizer as a load. For studying the application at the part of environment of water, When ozonizer gas reacts with a colon bacillus, the sterilization characteristics of a colon bacillus according to the ozone concentration and response time have been investigated. This proposed pulse power supply will be able to be practically used as a pulse power supply in various environment improvement facilities like sterilization of colon bacillus, deodorization, and Nox gas elimination.

The Characteristics of Superposed Ozonizer using Three-Phase Voltage (3상전압을 이용한 중첩방전형 오존발생기의 특성)

  • Kim, Yeong-Hun;Chun, Byung-Joon;Song, Hyun-Jig;Youn, Young-Dae;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2259-2261
    • /
    • 1999
  • In this paper, an ozonizer, which can generate individual and superposed silent discharge, using three-phase voltage has been designed and manufactured. The ozonizer consists of 3 electrodes(Central Electrode, Internal Electrode and External Electrode) and 2 gaps(gap between Central Electrode and Internal Electrode, gap between Internal Electrode and External Electrode). Ozone is generated according to voltage supplying method to each electrode by individual silent discharge and three-phase superposed discharge. The characteristics of ozone generation were investigated with variation of discharge power and the quantity of supplied gas($O_2$). In case of individual silent discharge, the maximum values of ozone concentration, ozone generation and ozone yield were obtained between internal electrode and external electrode, and its values were 2300[ppm], 570[mg/h] and 745[g/kWh] respectively. Each maximum values was 5039[ppm], 1773[mg/h] and 851[g/kWh] respectively, when three-phase superposed silent discharge was employed. Therefore, characteristics of ozone generation with three-phase voltage are improved compared with single-phase voltage because silent discharge is generated continuously.

  • PDF