• Title/Summary/Keyword: Ozone Decomposition

Search Result 122, Processing Time 0.028 seconds

Evaluation of Oxidation System for Metal Oxide Thin Film (금속 산화물 박막 제작을 위한 산화 시스템의 평가)

  • Lim, Jung-Kwan;Ryu, Sun-Jong;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.25-28
    • /
    • 2003
  • Ozone is a strong and useful oxidizing gas for the fabrication of oxide thin films. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Ozone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure. We found the decomposition in the ozone concentration negligible if the condensed ozone is transferred from the ozone condensation system to the film growth chamber within a few minutes.

  • PDF

Nano Particle Precipitation and Residual Ozone Decomposition of a Hybrid Air Cleaning System Comprising Dielectric Barrier Discharge Plasma and MnO2 Catalyst or Activated Carbon (활성탄 또는 촉매가 장착된 배리어 유전체 방전 하이브리드. 공기청정 시스템의 나노입자 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Hwang, Jung-Ho;Ji, Jun-Ho;Kang, Suk-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.524-533
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Aim of this work is to determine design and operating parameters of a hybrid air cleaning system. DBD and ESP(Electrostatic Precipitator) are used as nano particle charger and collector, respectively. Pelletized MnO$_2$ catalyst or activated carbon is used fer ozone decomposition or adsorption material. AC voltage of 7~10 KV(rms) and 60 Hz is used as DBD plasma source. DC - 8 KV is applied to the ESP for particle collection. The overall particle collection efficiency for the hybrid system is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized MnO$_2$ catalyst or activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

Determination of Hydroperoxyl/superoxide Anion Radical (HO2·/O2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method

  • Kwon, Bum-Gun;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1785-1790
    • /
    • 2006
  • A novel kinetic method for determination of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition in water is described. In this study, potential interferences of $O_3$ and the hydroxyl radicals, $^{\cdot}OH_{(O3)}$, are suppressed by $HSO_3{^-}/SO_3{^{2-}}$. $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ formed in ozone decomposition reduces $Fe^{3+}$-EDTA into $Fe^{2+}$-EDTA and subsequently the well-known Fenton-like (FL) reaction of $H_2O_2$ and $Fe^{2+}$-EDTA produces the hydroxyl radicals, $^{\cdot}OH_{(FL)}$. Benzoic acid (BA) scavenges $^{\cdot}OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection (${\lambda}_{ex}=320nm$ and ${\lambda}_{ex}=400nm$). The concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life ($t_{1/2}$). The steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ is proportional to the $O_3$ concentration at a given pH. However, the steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of $O_2{^{{\cdot}-}}$ by $O_3$ at higher pH conditions. The steady-state concentrations of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ are in the range of $2.49({\pm}0.10){\times}10^{-9}M(pH=4.17){\sim}3.01({\pm}0.07){\times}10^{-10}M(pH=7.59)$ at $[O_3]_o=60{\mu}M$.

Evaluation of Oxidation System for Metal Oxide Thin Film (금속 산화물 박막 제작을 위한 산화 시스템의 평가)

  • 임중관;김종서;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.590-593
    • /
    • 2003
  • Ozone is a strong and useful oxidizing gas for the fabrication of oxide thin films. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Crone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure. We found the decomposition in the ozone concentration negligible if the condensed ozone is transferred from the ozone condensation system to the film growth chamber within a few minutes.

  • PDF

Decomposition Characteristics of Bisphenol A by a Catalytic Ozonation Process (오존촉매산화공정에 의한 비스페놀 A의 분해특성)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • Bisphenol A (BPA) in aqueous solution was measured using HPLC technique, which was established by acetonitrile analysis and KDP solution analysis methods. In these experiments the decomposition characteristics of BPA were compared using the ozone alone, ozone/pH 10, and ozone/hydrogen peroxide processes. About 70% of 10 mg/L of BPA was removed during 60 min by the ozone alone process, while 10 mg/L of BPA was completely removed by the ozone/pH 10 and ozone/hydrogen peroxide processes in 40 min and 60 min, respectively. The final decomposition efficiency drawn from results of TOC and HPLC analyses showed that the ozone/hydrogen peroxide process was the best among them, whereas the concentrations of TOC and reaction intermediates when using the ozone/pH 10 process were higher than those of the ozone alone process after 60 min of reaction. The ozone/hydrogen peroxide process was the most efficient among them when oxidizing organic carbons in water to $CO_2$ and $H_2O$.

A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process (오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.490-495
    • /
    • 2012
  • The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.

Decomposition of Organic Matters by Ozonation in Advanced Water Treatment Process (고도정수처리공정에서 오존의 유기물 분해능)

  • Yoon Taekyung;Lee Gangchoon;Noh Byeongjil
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.327-333
    • /
    • 2005
  • The performance of ozone contactor in ozone-BAC advanced water treatment process was evaluated by the degree of decomposition of organic matters. The degree was measured by the analyses of $UV_{254}$ absorbance and the concentrations of DOC and BDOC for the sand filtered water and the ozone treated water, respectively. In addition, the ozone concentration in the contactor, required for the maximum BDOC concentration, was selected as the optimum concentration, and the appropriate residential time of ozone treated water in a reservoir was recommended based on the residual ozone concentration in the treated water. The following results were obtained from the pilot scale experiments. By ozonation $UV_{254}$ absorbance was decreased, and BDOC concentration was increased. The change of DOC concentration by ozonation was negligible, but the excess input of ozone resulted in the removal of the small amount of BDOC by complete oxidation. The optimum ozone concentration was 0.58mg $O_3/mg$ DOC. In order to remove residual ozone, 20minutes of the residential time were enough after ozonation.

A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst (대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.142-149
    • /
    • 2008
  • This paper proposes an effective decomposition method of trichloroethylene using pellet packed-bed non-thermal plasma reactor and catalyst. For that, two types of reactors filled with manganese dioxide and alumina pellets are designed. When $MnO_2$ packed reactor is used, TCE decomposition rate is high due to the generation of oxygen atom radicals at the surface of catalyst during ozone decomposition. In addition, When $Al_2O_3$ packed reactor is used, TCE is oxidized into DCAC and it did not decomposed into small molecules such as COx and $Cl_2$. However, the plasma processed gas using $Al_2O_3$ packed reactor is passed through the $MnO_2$ catalyst reactor, which is placed at the downstream of plasma reactor, the decomposition rate increased as well due to oxygen atom radicals through ozone decomposition. Therefore, the adequate use of $MnO_2$ catalyst in the plasma process is very promising way to increase the decomposition efficiency.

A Study on Characteristics of NOx and Ozone by Plasma Reaction (Plasma반응에 의한 NOx와 Ozone의 특성에 관한 연구)

  • Choi Jae Wook;Yamaguma Mizuki;Choi Jae Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.1-6
    • /
    • 2000
  • In this experiment, we made the plasma reactor which adhere needle electrode in order to treat safely an NOx which was included in the gas. Also we experimently investigated characteristics of equipment and inspected efficiency. As a reaction gas, by using mixture gas of $NO/N_2$ and $N_2/O_2$, we setted up initial NO concentration and gas flow rate was set at 2 ${\iota}$/min. As a reaction characteristics of NOx, when discharge input power was high, NO concentration decreased and when the oxygen concentration increased, the NO decomposition was easy and decomposition energy efficiency was high. Also in case that NO concentration increased, NO decomposition energy efficiency was high but decomposition rate was low. The characteristics of ozone, when discharge input power was high, ozone increased and when $NO/N_2$ concentration increased, the ozone decreased.

  • PDF

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.