• Title/Summary/Keyword: Oyster shell powder

Search Result 66, Processing Time 0.022 seconds

Mortar Characteristics for Reinforcement of Ancient Tomb Murals Using Oyster Shells

  • Lee, Hwa Soo;Yu, Yeong Gyeong;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.295-303
    • /
    • 2018
  • The application of reinforcing agents with hydraulic property and strength development characteristics was studied under conditions similar to those of mural-painting mortar made with oyster shell powder. Reinforcement mortar made with oyster shell powder showed hydraulic properties and strength to supplement the weaknesses of natural hydraulic lime(NHL); this confirmed its possibility as a wall-reinforcing material with enough strength for preserving mural paintings. Reinforcement mortar 1 showed hydraulic property and general characteristics of lime mortar, such as consistency and viscosity, as well as lower strength and higher whiteness compared to an NHL product. For Reinforcement mortar 2, the original wall sample characteristics were reflected by mixing more shell produced through calcination; and it showed similar strength to that of Reinforcement mortar 1 as well as high whiteness. In measuring the contraction ratio of reinforcement mortar samples, Reinforcement mortar 1 and 2 showed more stability in property change compared to the NHL Group.

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

A Strength Properties According to Water cement ratio using Oyster shell as Aggregate (굴 패각을 잔골재로 사용한 모르타르의 물시멘트비에 따른 강도특성)

  • Jung, Ui-In;Choi, In-Kwon;Heo, Min-Hoe;Kim, Bong-Joo;Won, Chul-Hee;Choi, Ho-Rim
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.154-155
    • /
    • 2016
  • Oyster shell is light weighted and its strength characteristic is similar to sand. So we produced mortar test piece using grounded oyster shell powder under 0.5mm, which is a standard of fine aggregate, and reviewed strength properties according to water cement ratio. In our test, we used two kinds of oyster shell particles: below 0.6mm and 1.2~2.5mm. Water cement ratio is varied 40% to 100% and we found that flexural strength and compressive strength are decreased in higher water cement ratio.

  • PDF

Egg shells and oyster shells for use on fireproof boards Study of physical and chemical properties (내화보드에 사용하기 위한 계란 껍데기 및 굴 패각의 물리적 화학적 특성 연구)

  • Shin, Dong Uk;Shin, Jong-Hyun;Kim, Han-Nah;Hong, Sang Hun;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.46-47
    • /
    • 2020
  • Oyster shells and egg shells consist of CaCO3, which is known to have excellent fire performance as the main component, and research is currently being conducted as a fireproof board material. Therefore, in this study, the physical and chemical properties of oyster shell powder and egg shell powder are studied to find out the applicability of fireproof board

  • PDF

Study on the Wastewater treatment as a Coagulant Using the Waste Oyster Shells and Loess (폐굴껍질과 황토로 제조한 응집제를 利用한 폐수처리에 관한 연구)

  • 고현웅;장성호;성낙창
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.45-51
    • /
    • 2002
  • This study was performed to investigate removal efficiency of wastewater by the prepared coagulant using waste oyster shell and loess. Waste oyster shell and loess contain respectively high CaO(55.43% by weight), $SiO_2$(45.30% by weight). Waste oyster shell was calcined to improve the purity of CaO at the calcination condition of $900^{\circ}C$ for 2hours, and then crushed 0.074 mm(200mesh) size by ball mill. Also, coagulant was prepared with calcined waste oyster shell and loess powder by hydration reaction. Calcined waste oyster shell and loess powder were combined with mixing ratio of 6 : 4, 7:3, 8:2 and 9:1. Though comparison experiment between prepared coagulant and chemical )$Ca(OH_2$, prepared coagulant was proved as having replaceable possibility of chemical )$Ca(OH_2$in wastewater treatment plant.

Effect of Oyster Shell Powder on Quality Properties and Storage Stability of Emulsion-type Pork Sausages (굴패각 첨가가 유화형 돈육 소시지의 품질 및 저장안정성에 미치는 효과)

  • Lee, Jae-Joon;Park, Sung-Hyun;Choi, Jung-Soek;Kim, Jong-Hee;Lee, Sang-Hwa;Choi, Suk-Hyun;Choi, Yang-Il;Jung, Dong-Soon
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.469-476
    • /
    • 2011
  • This study was conducted to evaluate the functional effects of adding oyster shell powder on the quality properties and storage stability of emulsion-type pork sausages to substitute phosphates as a curing agent. Seven treatments were prepared: T1 (Control), T2 (0.3% STPP), T3 (1.5% NaCl), T4 (1.5% NaCl + 0.5% whey protein), T5 (1.5% NaCl + 0.5% whey protein + 0.15% oyster shell powder), T6 (1.5% NaCl + 0.5% whey protein + 0.3% oyster shell powder), and T7 (1.5% NaCl + 0.5% whey protein + 0.5% oyster shell powder). Significant differences were observed for ash in the proximal analysis. Adding 0.5% oyster shell powder significantly increased pH values when compared to the other treatments. Pork sausages with 0.3% oyster shell powder had significantly improved water holding capacity and cooking loss. Adding oyster shell powder (0.15, 0.3, and 0.5%) resulted in significantly higher hardness, cohesiveness, springiness, and chewiness values than those in the other treatments. No significant differences were observed among treatments during 14 d of cold storage at $4^{\circ}C$.

Adsorption of Organic Compounds onto Mineral Substrate Prepared from Oyster Shell Waste

  • Jeon, Young-Woong;Jo, Myung-Chan;Noh, Byeong-Il;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.79-88
    • /
    • 2001
  • Humic acids react with chlorine to produce Trihalomethanes(THMs), known as carcinogens, during disinfection, the last stage in water purification. Currently, the removal of organic humic acids is considered the best approach to solve the problem of THM formation. Accordingly, the current study examined the adsorption of organic compounds of humic acids onto an inorganic carrier prepared from oyster shell waste. The adsorbent used was activated oyster shell powder(HAP) and silver ion-exchanged oyster shell powder(HAP-Ag), with CaCO$_3$ as the control. The adsorbates were phthalic acid, chelidamic acid, catechol, dodecylpyridinium chloride(DP), and 2-ethyl phenol(2-EP). The adsorption experiments were carried out in a batch shaker at $25^{\circ}C$ for 15 hours. The equilibrium concentration of the adsorbate solution was analyzed using a UV spectrophotometer and the data fitted to the Langmuir isotherm model. Since the solution pH values were found to be greater than the pKa values of the organic compounds used as adsorbates, the compounds apparently existed in ionic form. The adsorptive affinities of the organic acid and phenolic compounds varied depending on the interaction of electrostatic forces, ion exchange, and chelation. More carboxylic acids and catechol, rather than DP and 2-EP, were adsorbed onto HAP and HAP-Ag. HAP and HAP-Ag exhibited a greater adsorptive affinity for the organic compounds than CaCO$_3$, used as the control.

  • PDF

Effects of Calcium Powder Mixtures and Binding Ingredients as Substitutes for Synthetic Phosphate on the Quality Properties of Ground Pork Products

  • Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1179-1188
    • /
    • 2018
  • This study aimed to investigate the combined effect of using natural calcium mixtures and various binding ingredients as replacers for synthetic phosphate in ground pork products. We performed seven treatments: control (0.3% phosphate blend), treatment 1 (0.5% natural calcium mixtures [NCM, which comprised 0.2% oyster shell calcium and 0.3% egg shell calcium powder] and 0.25% egg white powder), treatment 2 (0.5% NCM and 0.25% whey protein concentrate), treatment 3 (0.5% NCM and 0.25% concentrated soybean protein), treatment 4 (0.5% NCM and 0.25% isolated soybean protein), treatment 5 (0.5% NCM and 0.25% carrageenan), and treatment 6 (0.5% NCM and 0.25% collagen powder). All the treatment mixtures had higher pH and lower cooking loss than the control, which was treated with phosphate. We found that NCM and binding ingredients had no negative effects on the moisture content, lightness, and yellowness of the cooked ground pork products. Treatments 3 and 4 showed significantly lower CIE $a^*$ values than the control. Treatments 2 and 6 improved the textural properties of the products. In conclusion, the combination of NCM with whey protein concentrate or collagen powder could be suitable for producing phosphate-free meat products.

Reuse of Oyster Shell Waste as Antimicrobial Water Treatment Agent by Silver Ion Exchange

  • Jo, Myung-Chan;Byeong-II Noh;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2000
  • A water treatment agent with antimicrobial activity(Ag-Os) was created by exchanging silver ion($Ag^{+}$) on calcined oyster shell powder. The desorption of the exchanged silver ion was negligible, thereby indicating a stable antimicrobial water treatment agent. The sterilization effect of Ag-Os on underwater microorganisms was then investigated. An MIC (Minimum Inhibitory Concentration) test result indicated that Ag-Os had an excellent sterilization effect on G-germs, such as Escherichia coli and Pseudomonas aeruginosa. Most germs were annihilated with an Ag-Os concentration of 200 ppm and contact time of 60 minutes. The sterilization effect was mainly dependent on the contact time. The zeta potential of the Ag-Os powder adsorbed on sand was measured relative to the concentration of exchanged silver ion. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the Ag-Os powder adsorbed on sand also increased. Accordingly, this result indicated that a higher silver ion than ion exchange capacity was present on the particle surface due to adsorption. Consequently, this increased concentration of exchanged silver ion would appear to significantly enhance the sterilization power.

  • PDF

Effect of Oyster Shell Addition on the Dissolved Air Flotation and Sedimentation of Bulking Sludge (팽화슬러지의 용존공기부상과 침전에 미치는 굴패각 첨가의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.82-88
    • /
    • 2007
  • The objective of this study is to examine the effect of the waste oyster shell powder as the addition agent in bulking sludge thickening of paper manufacturing plant using DAF(Dissolved Air Flotation) and gravitational sedimentation. The effect of parameters such as dosage and size distribution of oyster shell were examined. The results showed that the optimum dosage of mixed oyster shell(size range : $\sim250{\mu}m$) was 0.8 g/L. The oyster shell addition of 5.0 g/L in sedimentation process was increased thickening concentration of 3.25 times. When 5.0 g/L of oyster shell was added in DAF process, water content of sludge was decreased from 95.5% to 82.7% in dewatering process using Buchner funnel test device. When size of oyster shell was divided four ranges($\sim53{\mu}m$, $53\sim106{\mu}m$, $106\sim150{\mu}m$, $150\sim250{\mu}m$), optimum size range for the flotation and dewatering was $53\sim106{\mu}m$.