• Title/Summary/Keyword: Oxygen-free copper

Search Result 58, Processing Time 0.027 seconds

A Study on the Unidirectional Solidification of Oxygen Free Copper by the Horizontal Continuous Casting Process (수평식 연속주조법에 제조된 무산소동의 방향성 응고에 관한 연구)

  • Kim, Myung-Han;Lee, You-Jae;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.558-565
    • /
    • 1994
  • The horizontal continuous casting process with the heated mold was applied to obtain the unidirectionally solidified rods($4{\sim}8mm$ dia.) of pure copper with good surface quality. The results could be summarized as follows. 1. The unidirectional solidification of pure copper rods with good surface(mirror surface) quality could be obtained by placing the S/L interface inside the heated mold cavity even though the cast copper rods were covered with thin copper oxide layer. 2. The casting speed for 4mm dia. rods with mirror surfaces was affected significantly by the mold-cooler distance rather than the cooling flow rate when other casting conditions were fixed. 3. The casting speed was the main factor affecting the oxidation of copper during the continuous casting and the thickness of copper oxide layer decreased almost linearly as the casting speed increased.

  • PDF

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF

Fabrication of $Bi_{2}Sr_{2}CaCu_{2}O_{8}$ Superconducting Films by the LiReac-PreCu Method (급속반응공정에 의한 동 테이프 $Bi_{2}Sr_{2}CaCu_{2}O_{8}$)

  • 성현태;한상철;한영희;이준성;최희락
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • Wekk oriented $Bi_{2} Sr_{2} CaCu_{2} O_{8}$ suppercondcting thick films were fabricared on copper tape by LiReac-PreCu (liquid reaction between a Cu-free precousor and Cu tape) method. Cu-free precursor power which is composed of $Bi_{2}Sr_{2}Ca_{5}$ was printed on a copper tape by screen printing and was heat-treated. The speciment were partially in a molten state at the heat treatment temperature (85$0^{\circ}C$~87$0^{\circ}C$). The heat heat treatments for the reaction were performed in air or low oxygen pressure in several stages. XRD analyses of the resulting Bi2Sr2CaCu2O8 superconducting tapes show that the $Bi_{2} Sr_{2} CaCu_{2} O_{8}$ phase is dominant and a small amount of $Bi_{2} Sr_{2} Cu_{2} O_{6}$ phase is detected. Both phases are aligned in the c-axis direction.

  • PDF

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Effect of Heat Treatment Conditions on the Microstructure and Mechanical Properties of Asymmetrically Cold Rolled OFC Sheet (비대칭 냉간압연된 무산소동 판재의 열처리 조건이 미세조직과 기계적 성질에 미치는 영향)

  • Kim, S.T.;Kwon, S.C.;Kim, D.V.;Lee, J.K.;Seo, S.J.;Yoon, T.S.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.5-10
    • /
    • 2020
  • Heat treatment conditions of 88.5% asymmetrically cold rolled oxygen free copper (OFC) sheets have been studied to obtain an equiaxed fine microstructure with a grain size of less than 10 ㎛. The commercial OFC sheets with the thickness of 10 mm were asymmetrically cold rolled by using equal speed asymmetric rolling (ESAR) processes and total rolling reduction. The thickness of the rolled sheets were 88.5% and 1.15 mm, respectively. An equiaxed fine microstructure of OFC sheets with a grain size of 6.0 ㎛ were obtained when the asymmetrically cold rolled OFC sheets were heat treated at 180℃ for 40 minutes. The tensile strength of the asymmetrically cold rolled specimen increased from 217.6 MPa to 396.1 MPa, while the elongation of the specimen asymmetrically cold rolled and heat treated increased from 29.0% to 66.9% along with an 8% increase of the tensile strength.

A Study on Cutting Force Characteristics of Non-ferrous steel in Diamond Turning Process (다이아몬드 터닝 가공에서의 비철금속에 대한 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김현욱;나윤철;홍권희;김건희;김효식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.38-42
    • /
    • 2001
  • A complete quantitative understanding of DT has been difficult because the process represents such a broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. There are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

Cutting Characteristics of Oxygen-Free Using the Ultra Precision Machining (초정밀가공기를 이용한 무산소동 절삭특성)

  • 고준빈;김건희;원종호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.120-126
    • /
    • 2002
  • The needs of ultra-precisely machined parts are increasing more and more. But the experimental data required to ultra precision machining of nonferrous metal is insufficient. The behavior of cutting in micro cutting area is different from that of traditional cutting because of the size effect. Copper is widely used as optical parts such as LASER reflector's mirror and multimedia instrument. In experimental, after oxygen-free copper is machined by ultra precision machine with natural mono crystal diamond tool (NCD) and synthetic poly crystal diamond tool (PCD), we compared chip formation and tool's wear according to used tool. Also, we researched optimized cutting condition with the results measured according to cutting condition such as spindle speed, feed rate and depth of cut. As a result, the optimal working condition that makes good surface roughness is obtained. The surface roughness is good when spindle speed is above 80 m/min, and feed rate is small and depth of cut is above 0.5 ${\mu}{\textrm}{m}$. In cutting of klystron anode and cavity 3.2 nmRa of surface roughness is obtained.

A Study on Cutting Force Characteristics in Diamond Turning Process (다이아몬드 터닝 가공공정에서의 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김건희;김근홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.957-960
    • /
    • 1997
  • A complete quantitative understanding of DT has been difficult because the process represents such s broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. Here are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

Microstructure and Bonding Strength of Tungsten Coating Deposited on Copper by Plasma Spraying

  • Song, Shu-Xiang;Zhou, Zhang-Jian;Du, Juan;Zhong, Zhi-Hong;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.511-512
    • /
    • 2006
  • Tungsten coatings with different interlayers onto the oxygen-free copper substrates were fabricated by atmosphere plasma spraying. The effects of different interlayers of NiCrAl, NiAl and W/Cu on bonding strength were studied. SEM, EDS and XRD were used to investigate the photographs and compositions of these coatings. The tungsten coatings with different initial particle sizes resulted in different microstructures. Oxidation was not detected in the tungsten coating, but in the interlayer, it was found by both XRD and EDS. The tungsten coating deposited directly onto the copper substrate presented higher bonding strength than those with different interlayers.

  • PDF