• Title/Summary/Keyword: Oxygen scavenging system

Search Result 197, Processing Time 0.025 seconds

Studies on the antioxidant Effects of Carthami Flos Extract (홍화(紅花) 추출물의 항산화 효과에 대한 연구)

  • Yoo, Jin-Sook;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.137-147
    • /
    • 2007
  • Objective : The objective of this study was to investigate the antioxidative effects of Carthami Flos extract. Methods : Total antioxidant status was examined by total antioxidant capacity(TAC) and total antioxidant response(TAR) against potent free radical reactions. The effect of Carthami Flos extract was examined far details of total phenolic content concentration at which 1,1-dipheny1-2-picrylhydrazyl(DPPH) radical scavenging activity was inhibited, the inhibitory effect on lipid peroxidation, and the effect on reactive oxygen species(ROS) generation. Results : TAC of Carthami Flos extract at the concentration of 5 mg/ml was 1.84 mM Trolox equivalent. 2. TAR of Carthami Flos extract, on the other hand, couldn't be determined due to interference from unidentified compounds. 3. Total phenolic content of Carthami Flos extract at the concentration of 5 mg/ml was 2.01 mM gallic acid equivalent. 4. Concentration of Carthami Flos extract at which DPPH radical scavenging activity was inhibited by 50% was 6.43 mg/ml as compared to 100% by Pyrogallol solution as a reference. 5. The inhibitory effect of the extract on lipid peroxidation was examined using rat liver mitochondria induced by FeS04/ascorbic acid. Carthami Flos extract at the concentration of 10 ms/ml slightly but significantly decreased TBARS concentration. The extract continued to prevent lipid peroxidation in a dose-dependent manner. 6. The effect of Carthami Flos extract on reactive oxygen species(ROS) generation was examined using a cell-free system induced by hydrogen peroxide/FeS04. Addition of 1 mg/ml of Carthami Flos extract significantly reduced dichlorofluorescein(DCF) fluorescence. Carthami Flos extract caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that the ektract significantly prevented ROS generation in vitro. Conclusion: : Antioxidant efffcts of Carffami ffor extract seem to be due, at least in part, to the prevention offree radical-induced oxidation, fellowed by inhibition of lipid peroxidation.

  • PDF

Scavenging Effects of Ginkgo biloba Extract on Paraquat Induced Toxicity (Paraquat 유도독성에 대한 Ginkgo biloba Extract의 독성경감효과(I))

  • 최병기;김영찬
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.105-115
    • /
    • 1998
  • Reactive oxygen species (ROS) are highly reactive molecules due to their unpaired electron. They have been suspected as one of the major tissue damage inducers in biological metabolic systems. Antioxidant enzymes, such as catalase and superoxide dismutase, could not repair all the oxidative damages resulting from those excessive toxic ROS. It is, therefore, urgent to develop effective antioxidants to relieve from the oxidatire damages. In this study antioxidative effects were investigated by using two flavonoids such as quercetin and naringenin and a flavonoid-rich extract, Ginkgo biloba extract in combination with paraquat that is known as a strong generator of oxygen radicals. The results are summeringed as follows: 1. To assess radical scavenging ability reduction concentrations (IC$_{50}$) of 1,1-diphenyl-2-picrylhydrazine (DPPH) within 15 minutes were measured. The values of the IC$_{50}$ of quercetin and Ginkgo biloba extract were 15.4 $\mu$M and 13.2$\mu$g/ml, respectively. Their radical removing activities showed concentration-dependent manners. 2. In the hydrogen peroxide assay by using PMS-NADH system, quercetin, naringenin and Ginkgo biloba extract led to removing hydrogen peroxide in concentrationdependent manner whose removing abilities at 100$\mu$M or 100 $\mu$g/ml were 75.6, 25.8 and 26.0%, respectively. 3. In the hydrogen peroxide-induced rat blood hemolysis assay all three compounds led to similar effects whose hemolysis inhibition ratios at 100$\mu$M or 100$\mu$g/ml were 68.0, 5.14 and 55.8%, respectively. 4. In the xanthinee oxidase assay by measuring degree of NADH oxidation in the presence of hypoxanthine and xanthinee oxidase, both quercetin and Ginkgo biloba extract showed excellent activities showing 42.8 and 24.2% inhibiting xanthine oxidase activity at 100$\mu$M or 100$\mu$g/ml concentrations, respectively.

  • PDF

The root extract of Paeonia lactiflora Pall inhibits the oxidative damage via its anti-oxidant activity

  • Yun, Ji Young;Jeong, Jin Boo;Eo, Hyun Ji;Kwon, Kun Woo;Hong, Se Chul;Jeong, Hyung Jin;Koo, Jin Suk
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.7-13
    • /
    • 2012
  • Objectives : Reactive oxygen species (ROS) have been associated with pathogenic processes including carcinogenesis through direct effect on DNA directly and by acting as a tumor promoter. Therefore, it has been regarded that ROS may be a major target for cancer prevention. The root of Paeonia lactiflora pall (PL), a traditional Chinese herb, has been a component of effective prescriptions for treatment of liver disease. Also, there are some reports about the antioxidant activities of the extracts from PL. However, little has been known about the effects of PL against oxidative damage. This work aimed to elucidate the anti-oxidant effects of Paeonia lactiflora pall (PL) in the non-cellular system and cellular system. Methods : Antioxidant activities of PL were evaluated by hydroxyl radical scavenging assay and $Fe^{2+}$ chelating assay. Anti-oxidative effect of PL was evaluated by ${\varphi}X$-174 RF I plasmid DNA cleavage assay in non-cellular system. In addition, DNA migration assay, expression level of phospho-H2AX, MTT assay and lipid peroxidation assay were performed for evaluate the anti-oxidative effect of PL in cellular system. Results : PL had a dose-dependent hydroxyl radical scavenging and $Fe^{2+}$ chelating capacity. In addition, PL inhibited oxidative DNA and cell damage induced by hydroxyl radical in non-cellular system and cellular system. Conclusion : Taken together, P. lactiflora pall may be possible for the application to a potential drug for treating the oxidative diseases such as cancer.

Antioxidative and Inhibitory Activities on Tyrosinase of Hippophae rhamnoides Leaf Extracts (비타민나무 잎 추출물의 항산화 및 타이로시네이즈 저해활성)

  • Kim, Jung-Eun;Chae, Kyo-Young;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.265-273
    • /
    • 2011
  • In this study, the antioxidative and inhibitory effects on tyrosinase and elastase of Hippophae rhamnoides (H. rhamnoides) leaf extracts were investigated. The ethyl acetate fraction of H. rhamnoides extracts showed more effective free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$ = 4.68 ${\mu}g$/mL). Reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) of the aglycone fraction in the luminol-dependent $Fe^{3+}$-EDTA/$H_2O_2$ system was 0.19 ${\mu}g$/mL. The aglycone fraction exhibited more prominent cellular protective effects (${\tau}_{50}$, 133.3 min at 10 ${\mu}g$/mL) in the $^1O_2$-induced photohemolysis of human erythrocytes. The inhibitory effect ($IC_{50}$) of the aglycone fraction on tyrosinase was 54.86 ${\mu}g$/mL, and more effective than arbutin known as whitening agent. These results indicate that fractions of Hippophae rhamnoides extract can be used as antioxidants in biological system, particulaly skin exposed to UV radiation by quenching and/or scavenging $^1O_2$ and other ROS, and protecting cellular membranes against ROS.

Scavenging Reactive Oxygen Species by Rice Dehydroascorbate Reductase Alleviates Oxidative Stresses in Escherichia coli

  • Shin, Sun-Young;Kim, Il-Sup;Kim, Yul-Ho;Park, Hyang-Mi;Lee, Jang-Yong;Kang, Hong-Gyu;Yoon, Ho-Sung
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.616-620
    • /
    • 2008
  • Maintaining redox balance is one of the crucial requirements for a cell to endure stress from the outside. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) plays an important role in the ascorbate-glutathione cycle; one of the major ROS scavenging systems in most known biological systems. A cDNA clone of the DHAR gene from Oryza sativa (OsDHAR) was isolated and overexpressed in Escherichia coli BL21 (DE3) strain from the pET-28a(+) expression vector. The OsDHAR transformed E. coli cells showed significantly higher DHAR activity and a lower level of ROS than the E. coli cells transformed by an empty pET-28a(+) vector. Also, the DHAR-overexpressing E. coli strain was more tolerant to oxidant- and heavy metal-mediated stress conditions than the control E. coli strain. The results suggest that the overexpressed rice DHAR gene effectively functions in a prokaryotic system and provide protection to various oxidative stresses.

Assessment of Salinity-Induced Antioxidative Defense System of Diazotrophic Cyanobacterium Nostoc muscorum

  • Srivastava, Ashish Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1506-1512
    • /
    • 2010
  • The present study examined the salinity-induced oxidative damage and differential response of enzymatic and nonenzymatic antioxidants of Nostoc muscorum. As compared with carotenoid content that showed induction, the chlorophyll and phycocyanin contents were inhibited after salt stress. Acceleration of lipid peroxidation and peroxide production suggested the onset of oxidative damage. The activities of all studied enzymatic antioxidants were significantly increased by salt stress, with maximum induction occuring with superoxide dismutase (154.8% at 200 mM NaCl treatment). Interestingly, under severe stress condition (250 mM NaCl), ascorbate peroxidase seemed to be more crucial than catalase for peroxide scavenging. Among the studied nonenzymatic antioxidants, ${\alpha}$-tocopherol was induced maximally (56.0%); however, ascorbate and reduced glutathione were increased by only 8.9% after 250 mM NaCl treatment as compared with control cells. Therefore, salinity was found to induce the antioxidative defense system of N. muscorum.

Effect of Nitric Oxide on Paraquat-Tolerance in Lettuce Leaves (상추잎의 Paraquat 내성에 미치는 Nitric oxide의 영향)

  • Lee, Jee-Na;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1509-1519
    • /
    • 2011
  • The protective effect of nitric oxide (NO) on the antioxidant system under paraquat(PQ) stress was investigated in leaves of 8-week-old lettuce (Lactuca sativa L.) plants. PQ stress caused a decrease of leaf growth including leaf length, width and weight. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated PQ stress induced growth suppression. SNP permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under PQ exposure, suggesting that NO has protective effect on chloroplast membrane in lettuce leaves. Flavonoids and anthocyanin were significantly accumulated in the leaves upon PQ exposure. However, the rapid increase of these compounds was alleviated in the SNP treated leaves. PQ treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in the leaves, while SNP prevented PQ induced increase in malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that SNP serves as an antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, superoxide dismutase (SOD) and catalase (CAT) in lettuce leaves in the presence of NO donor under PQ stress were higher than those under PQ stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, to the lettuce leaves arrested SNP mediated protective effect on leaf growth, photosynthetic pigment and antioxidant systems. However, PTIO had little effect on lettuce leaves under PQ stress compared with that of PQ stress alone. The obtained data suggest that the damage caused by PQ stress is in part due to increased generation of active oxygen by maintaining increased antioxidant enzyme activities and SNP protects plants from oxidative stress. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative damage induced by PQ stress and thus confer PQ tolerance.

Microplate-Based Oxygen Radical Absorbance Capacity (ORAC) Assay of Hydrophilic and Lipophilic Compartments in Plasma

  • Kwak Ho Kyung;Blumberg Jeffrey B.;Chen Chung Yen;Milbury Paul E.
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.48-54
    • /
    • 2006
  • Methods have been developed to evaluate the total antioxidant capacity of foods and plasma but limitations are associated with their ability to determine precisely the contribution of lipophilic antioxidants in a lipid milieu as well as interactions among them Thus, we modified the Oxygen Radical Absorbance Capacity (ORAC) assay to determine the peroxyradical scavenging ability of both hydrophilic and lipophilic compartments in plasma The hydrophilic ORAC assay was performed in a phosphate buffer system utilizing 2,2'-azobis (2-amidinopropane) dihydrochloride as a peroxyradical generator and fluorescein as the target The lipophilic ORAC assay was carried out in a dimethylsulfoxide :butyronitrile (DMSO/BN, 9:1 v/v) system using 2,2'-azobis (2,4-dimethyl valeronitrile) as a peroxyradical generator and BODIPY C11 581/591 as the target Analyses were conducted in bovine serum supplemented with water - and lipid - soluble antioxidants and in human plasma. Albumin (0.5$\sim$5 g/dL) and uric acid (0.1$\sim$0.5 $\mu$mol/L) increased hydrophilic ORAC values in a dose-dependent fashion ($R^{2}$=0.97 and 0.98, respectively) but had no impact on lipophilic ORAC values. $\alpha$-Tocopherol (15$\sim$200 $\mu$mol/L) increased lipophilic ORAC values in a dose-dependent fashion ($R^{2}$=0.94); neither $\alpha$-tocopherol nor $\beta$-carotene had an impact on hydrophilic ORAC values. However, addition of $\beta$-carotene at physiological concentration (0.23$\sim$1.86 $\mu$mol/L), either alone or in combination with other carotenoids, had no significant impact on lipophilic ORAC values. Thus, while assays of 'total antioxidant capacity' in biological matrices would be a useful research and clinical tool, existing methods are limited by the lack of complete responsiveness to the full range of dietary antioxidants.

A study on Histologically Change of the Skin and Liver in Skin Burn (피부화상에 의한 피부 및 간의 조직학적 변화에 관한 연구)

  • Kim, Han-Soo;Kim, Sang-Soo;Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.923-934
    • /
    • 2001
  • In order to investigate a pathogenesis of liver damage induced by skin burn, thermal injury was induced by scald burn on entirely dorsal surface in rats (total body surface area 30%) except for inhalated injury. At 5 and 24 h after scald bum, biochemical assay and morphological changes in skin tissue, serum and liver tissue were examined. The effects of bum injury on the levels of glutathione, lipid peroxide and on the activities of oxygen free radical generating and scavenging enzymes have been determined in association with observing of histologic and ultrastructural changes, measuring the protein concentration in plasma, and counting the number of intravascular polymorphonuclear leukocytes. The activity of xanthine oxidase, an enzyme of oxygen free radical generating system. was elevated (p<0.01) in serum, but not in skin and in liver tissue. Futhermore, thermal injury decreased not only the protein concentration in plasma but also the number of leukocytes, that indicates induction of edema formation with protein exudation and inflammation by neutrophil infiltration into the internal organs. These data suggest that acute dermal scald burn injury leads to liver damage, that is related to elevation of xanthine oxidase activity in serum. Xanthine oxidase may be a key role in the pathogenesis of liver damage induced by skin burn.

  • PDF

Antioxidant System-Inducing Effects of Jeju Ground Water in C57BL/6 Mice against Gamma-ray Radiation

  • Kim, A-Reum-Da-Seul;Jee, Young-Heun;You, Ho-Jin;Hyun, Jin-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, we reported that Jeju ground water contains vanadium components and exerts antioxidant effects in vitro and in vivo via the scavenging of reactive oxygen species and enhancement of antioxidant enzyme activities. In the present study, the antioxidant actions of Jeju ground water were compared with those of tap water against gamma-ray radiation in mice. C57BL/6 mice were irradiated with gamma-ray at a dose rate of 2 Gy. The mice were then given tap water or Jeju ground water for 90 days. Jeju ground water compared with tap water enhanced the activities and levels of superoxide dismutase, catalase, and glutathione peroxidase in irradiated liver tissues. Jeju ground water also enhanced the levels of intracellular reduced glutathione, which is vital for normal liver function and repair. These results suggest that vanadium-containing Jeju ground water can safeguard against the harmful actions of gamma-ray radiation through the support of hepatic antioxidant processes.