Browse > Article
http://dx.doi.org/10.4014/jmb.1005.05037

Assessment of Salinity-Induced Antioxidative Defense System of Diazotrophic Cyanobacterium Nostoc muscorum  

Srivastava, Ashish Kumar (Department of Botany, School of Life Sciences, Mizoram University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.11, 2010 , pp. 1506-1512 More about this Journal
Abstract
The present study examined the salinity-induced oxidative damage and differential response of enzymatic and nonenzymatic antioxidants of Nostoc muscorum. As compared with carotenoid content that showed induction, the chlorophyll and phycocyanin contents were inhibited after salt stress. Acceleration of lipid peroxidation and peroxide production suggested the onset of oxidative damage. The activities of all studied enzymatic antioxidants were significantly increased by salt stress, with maximum induction occuring with superoxide dismutase (154.8% at 200 mM NaCl treatment). Interestingly, under severe stress condition (250 mM NaCl), ascorbate peroxidase seemed to be more crucial than catalase for peroxide scavenging. Among the studied nonenzymatic antioxidants, ${\alpha}$-tocopherol was induced maximally (56.0%); however, ascorbate and reduced glutathione were increased by only 8.9% after 250 mM NaCl treatment as compared with control cells. Therefore, salinity was found to induce the antioxidative defense system of N. muscorum.
Keywords
Antioxidants; lipid peroxidation; Nostoc muscorum; oxidative damage; reactive oxygen species; salinity;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kim, K. H., N. Dashdorj, H. Zhang, J. Yan, W. A. Carmer, and S. Savikhin. 2005. An anomalous distance dependence of intraprotein chlorophyll carotenoid triplet energy transfer. Biophys. J. Biophys. Lett. 89: L28-L30.
2 Lu, C. and J. Zhang. 2000. Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. J. Exp. Bot. 51: 911-917.   DOI   ScienceOn
3 Mittler, R. and E. Tel-Or. 1991. Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC 7942. Free Radic. Res. Commun. 12-13: 845-850.
4 Giannopolitis, C. N. and S. K. Ries. 1977. Superoxide dismutase 1. Occurrence in higher plants. Plant Physiol. 59: 309-314.   DOI   ScienceOn
5 Halliwell, B. and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine. Oxford Clarendon Press.
6 Canini, A., D. Leonardi, and M. G. Caiola. 2001. Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after surface bloom formation. New Phytol. 152: 107-116   DOI   ScienceOn
7 Keller, T. and H. Schawger. 1997. Air pollution and ascorbic acid. Eur. J. Forest Pathol. 7: 338-350.
8 Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant 92: 696-717.   DOI   ScienceOn
9 Gerloff, G. C., G. P. Fitzgerald, and F. Skoog. 1950. The isolation, purification and culture of blue-green algae. Am. J. Bot. 37: 216-218.   DOI   ScienceOn
10 Giannopolitis, C. N. and S. K. Ries. 1977. Superoxide dismutase 1. Occurrence in higher plants. Plant Physiol. 59: 309-314.   DOI   ScienceOn
11 Erdmann, N. and M. Hagemann. 2001. Salt acclimation of algae and cyanobacteria: A comparison, pp. 323-362. In L. C. Rai and J. P. Gaur (eds.). Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanism. Springer-Verlag Berlin, Germany.
12 Cakmak, I. and J. Horst. 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83: 463-468.   DOI
13 Yang, Y., S. Xu, L. An, and N. Chen. 2007. NADPH oxidasedependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J. Plant Physiol. 164: 1429-1435.   DOI   ScienceOn
14 Zutshi, S., M. Choudhary, N. Bharat, M. Z. Abdin, and T. Fatma. 2008. Evaluation of antioxidant defense responses to lead stress in Hapalosiphon fontinalis-339. J. Phycol. 44: 889- 896.   DOI   ScienceOn
15 Bhargava, P., Y. Mishra, A. K. Srivastava, O. P. Narayan, and L. C. Rai. 2008. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: A proteomic assessment of its survival strategy. Photosynth. Res. 96: 61-74.   DOI   ScienceOn
16 Thapar, R., A. K. Srivastava, P. Bhargava, Y. Mishra, and L. C. Rai. 2008. Impact of different abiotic stresses on the physiological processes of wild and copper acclimated Anabaena doliolum. J. Plant Physiol. 165: 306-316.   DOI   ScienceOn
17 Twiner, M. J. and C. G. Trick. 2000. Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. J. Plankt. Res. 22: 1961-1975.   DOI   ScienceOn
18 Tyagi, R., A. Kumar, M. B. Tyagi, P. N. Jha, H. D. Kumar, R. P. Sinha, and D. P. Häder. 2003. Protective role of certain chemicals against UV-B-induced damage in the nitrogen-fixing cyanobacterium, Nostoc muscorum. J. Basic Microbiol. 43: 137-147.   DOI   ScienceOn
19 Vranova, E., D. Inze, and F. V. Breusegem. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227- 1236.   DOI   ScienceOn
20 Bradford, M. M. 1972. A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principle of protein dye binding. Anal. Biochem. 72: 248-254.
21 Singh, R. N. 1961. Role of Blue-Green Algae in the Nitrogen Economy of Indian Agriculture. ICAR, New Delhi.
22 Tang, D., S. Shi, D. Li, C. Hu, and Y. Liu. 2007. Physiological and biochemical responses of Scytonema javanicum (cyanobacteria) to salt stress. J. Arid Environ. 71: 312-320.   DOI   ScienceOn
23 Tel-Or, E., M. Huflejt, and L. Packer. 1985. The role of glutathione and ascorbate in hydroperoxide removal in cyanobacteria. Biochem. Biophys. Res. Commun. 132: 533-539.   DOI   ScienceOn
24 Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121- 126. Anderson, M. E. 1985. Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol. 113: 548-555.
25 Srivastava, A. K., P. Bhargava, A. Kumar, L. C. Rai, and B. A. Neilan. 2009. Molecular characterization and effect of salinity on cyanobacterial community from rice fields of Eastern Uttar Pradesh, India. Saline Sys. 5: 4.   DOI   ScienceOn
26 Srivastava, A. K., P. Bhargava, Y. Mishra, B. Shukla, and L. C. Rai. 2006. Effect of salt, copper and temperature pretreatment on ultraviolet-B-induced antioxidants in diazotrophic cyanobacterium Anabaena doliolum. J. Basic Microbiol. 42: 135-144.
27 Srivastava, A. K., P. Bhargava, and L. C. Rai. 2005. Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. World J. Microbiol. Biotechnol. 22: 1291-1298.
28 Srivastava, A. K., P. Bhargava, R. Thapar, and L. C. Rai. 2008. A physiological and proteomic analysis of salinity induced changes in Anabaena doliolum. Environ. Exp. Bot. 64: 49-57.   DOI   ScienceOn
29 Schmidt, A. and K. J. Kunert. 1986. Lipid peroxidation in higher plants, the role of glutathione reductase. Plant Physiol. 82: 700-702.   DOI   ScienceOn
30 Singh, D. P. and K. Kshatriya. 2002. NaCl-induced oxidative damage in the cyanobacterium Anabaena doliolum. Curr. Microbiol. 44: 411-417.   DOI   ScienceOn
31 Sagisaka, S. 1976. The occurrence of peroxide in perennial plant Populas gebrica. Plant Physiol. 57: 308-309.   DOI   ScienceOn
32 Sattler, S. E., E. B. Cahoon, S. J. Coughlan, and D. DellaPenna. 2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132: 2184-2195.   DOI   ScienceOn
33 Schaedle, M. and J. A. Bassham. 1977. Chloroplasts glutathione reductase. Plant Physiol. 59: 1011-1012.   DOI   ScienceOn
34 Munné-Bosch, S., K. Schwarz, and L. Alegre. 1999. Enhanced formation of tocopherol and highly oxidized abietane diterpenes in water-stressed Rosemary plants. Plant Physiol. 121: 1047-1052.   DOI   ScienceOn
35 Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
36 Rajendran, U. M., E. Kathirvel, and N. Anand. 2007. Desiccationinduced changes in antioxidant enzymes, fatty acids, and amino acids in the cyanobacterium Tolypothrix scytonemoides. World J. Microbiol. Biotechnol. 23: 251-257.   DOI   ScienceOn