• 제목/요약/키워드: Oxygen resistance

검색결과 738건 처리시간 0.033초

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • 제2권2호
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

ITO 박막의 공정변수에 따른 특성 연구 (Dependance of the Process Parameters on the Characteristic of the ITO Thin Films)

  • 김소라;서정은;김상호
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.158-163
    • /
    • 2004
  • ITO thin film was deposited on the glass by RF magnetron sputtering. Dependance of the process parameters such as thickness, target-to-substrate distance, substrate temperature and oxygen partial pressure on the transmittance and electrical resistance of ITO film were investigated. The deposition conditions for getting better optical and electrical ITO characteristics were the 1800-$2300\AA$ thickness, 65mm substrate-to-target distance, $350^{\circ}C$ substrate temperature and 8% oxygen partial pressure. At these conditions, the transmittance and sheet resistance of the ITO film were 83.3% and 77.86Ω/$\square$, respectively.

산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성 (Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change)

  • 양민규;박재완;이전국
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.

Oxygen reduction reaction and electrochemical properties of transition metal doped (Pr,Ba)Co2O5+𝛿

  • Kanghee Jo;Heesoo Lee
    • 한국결정성장학회지
    • /
    • 제33권1호
    • /
    • pp.37-44
    • /
    • 2023
  • Transition metal (Me = Cu, Fe, Ni) doped (Pr, Ba)Co2O5+𝛿 (PBCO) material were investigated in terms of electronic structure change and electrochemical properties. It was confirmed that (Pr, Ba)(Co, Cu)O5+𝛿 (PBCCu) and (Pr, Ba)(Co, Fe)O5+𝛿 (PBCFe) showed cubic and orthorhombic structures, respectively, but (Pr, Ba)(Co, Ni)O5+𝛿 (PBCNi) showed secondary phases. PBCCu has an average particle diameter of 1093 nm, and PBCO and PBCFe have an average particle diameter of 495.1 nm and 728 nm, respectively. The average oxidation values of B site ions in PBCMe were calculated to be 3.26 (PBCO), 2.48 (PBCCu), 3.32 (PBCFe), and valence band maximum (VBM) was -0.42 eV (PBCO), -0.58 eV (PBCCu), -0.11 eV (PBCFe). It is expected that PBCCu easily interacts with adsorbed oxygen due to the lowest oxidation value and the highest VBM. The polarization resistance was 0.91 Ω cm2 (PBCO), 0.77 Ω cm2 (PBCCu), 1.06 Ω cm2 (PBCFe) at 600℃, showing the lowest polarization resistance of PBCCu.

Study on the Oil Resistance, Morphological and Dynamic Mechanical Properties, Flame Retardance of Ethylene Vinyl Acetate Copolymer and Ethylene Propylene Rubber Compounds

  • Sung, Il Kyung;Lee, Won Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.27-34
    • /
    • 2017
  • In this experiment, blends of ethylene vinyl acetate rubber (EVM) with a vinyl acetate (VA) content greater than 40 wt% and ethylene propylene rubber (EPM) were prepared by mechanical mixing; a number of parameters of the blends, including oil resistance, morphological and dynamic mechanical properties and flame retardancy, were subsequently measured. In the $100^{\circ}C$ oil resistance test, both the ammonium polyphosphate/dipentaerythritol/expandable graphite (APP/DPER/EG) and aluminum hydroxide (ATH) flame retardant systems showed an increase in volume change with increasing EPM content. For the ATH system, the dispersion shape was coarse and aggregation was observed. The results of a dynamic mechanical test showed slightly higher E' and E'' for the APP/DPER/EG flame retardant system when compared to the single ATH system. For both the APP/DPER/EG and ATH systems, the limited oxygen index (LOI) tests performed at increasing content of EPM showed a LOI value higher than 30, indicating excellent flame resistance.

AC Impedance Study of Hydrogen Oxidation and Reduction at Pd/Nafion Interface

  • Song, Seong-Min;Koo, Il-Gyo;Lee, Woong-Moo
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.231-238
    • /
    • 2001
  • Electrocatalytic activity of palladium for hydrogen oxidation and reduction was studied using AC impedance method. The system under study was arranged in electrolytic mode consisting of Pd electrode under study, Pt counter electrode and Nafion electrolyte between them. Two types of Pd electrodes were used - carbon-supported Pd (Pd/C) and Pd foil electrode. Pd/C anode contacting pure hydrogen showed a steady decrease of charge transfer resistance with the increase of anodic overpotential, which is an opposite trend to that found with Pd foil anode. But Pd foil cathode also exhibited a decrease of the resistance with the increase of cathodic overpotential. The relationship between imposition of overpotential and subsequent change of the charge transfer resistance is determined by the ratio of the rate of faradaic process to the rate of mass transportation; if mass transfer limitation holds, increase of overpotential accompanies the increase of charge transfer resistance. Regardless of the physical type of Pd electrode, the anode contacting hydrogen/oxygen gas mixture did not reveal any independent arc originated from local anodic oxygen reduction.

  • PDF

Effect of Atmospheric Plasma Treatment of Carbon Fibers on Crack Resistance of Carbon Fibers-reinforced Epoxy Composites

  • Park, Soo-Jin;Oh, Jin-Seok;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.106-110
    • /
    • 2005
  • In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor ($K_{IC}$), and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 $cm^{-1}$ and hydroxyl group (O-H) at 3450 $cm^{-1}$ were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the $O_{1S}/C_{1S}$ ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including $K_{IC}$ (critical stress intensity factor) and $G_{IIC}$ (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.

  • PDF

폐문부박리가 폐혈류 역학에 미치는 영향 (Pulmonary Hemodynamic Alterations Following Radical Hilar Stripping)

  • 곽문섭;이홍균
    • Journal of Chest Surgery
    • /
    • 제9권1호
    • /
    • pp.20-26
    • /
    • 1976
  • Author has performed experimental study on hemodynamic changes of lung following radical hilar stripping and contralateral pulmonary artery ligation. In view of hemodynamic changes in group 1 (right pulmonary artery ligation only) and group 2(left hilar stripping+right pulmonary artery ligation). group 2 showed remarkable decrease rate in oxygen uptake (P<0.001) and total pulmonary blood flow(P<0.001), and the more increase rate in mean pulmonary artery pressure(P<0.02) and total pulmonary vascular resistance (P<0.001). Meanwhile, the decrease percent of left lung vascular resistance was lower than group 1(P<0.001). The hemodynamic changes in group 1 returned to control range two weeks later. In the group 2, two dogs were expired as a result of atelectasis and pulmonary hypertension. Among allying 8 dogs, five months after operation, follow up studies performed in two dogs, which showed normal pulmonary hemodynamics similar to preoperative data. The altered blood gas values and decreased oxygen uptake are more remarkable in denervated lung, which may due to pulmonary hypertension and partly retained more secretion in bronchial trees than usual. Important factors of raising pulmonary vascular resistance and pulmonary artery pressure are considered as the increased blood flow to remaining left lung and dysfunction of pulmonary vascular bed to accept the increased blood flow after denervation. Loss of nerve innervation had a influence, to some extent, to the decrease of oxygen uptake and the increase of pulmonary vascular resistance and pulmonary artery pressure. There can be little question that denervation does impair the pulmonary hemodynamics, however, intact pulmonary nerve innervation is not absolutely essential for survival of the animal.

  • PDF

Crosslinked IIR의 블렌드비에 따른 EPDM의 내기체투과특성 향상 (Gas Impermeability Enhancement of EFDM/Crosslinked IIR Blends)

  • 김현준;정일현;홍인권;박재우
    • Elastomers and Composites
    • /
    • 제33권3호
    • /
    • pp.193-200
    • /
    • 1998
  • 고무소재는 다양한 종류별로 구조에 따라 다른 물성을 갖는 것으로 알려져 있다. 일반적으로 EPDM 고무는 내후성과 내오존성이 뛰어나고 열이나 냉기, 습기의 노출에도 잘 견디는 것으로 밝혀진 바 있다. 한편 crosslinked IIR은 물과 기체투과에 대한 저항성이 큰 것으로 알려져 두가지 성분의 장점을 갖도록 EPDM/crosslinked IIR의 블렌드를 새로운 형태의 소재로 추천할 수 있다. 따라서 본 실험에서는 EPDM과 crosslinked IIR의 블렌드비를 변화시키면서 가교시간과 블렌드후 물리/화학적 특성의 개선을 목표로 하였다. 결과적으로 30wt.%의 crosslinked IIR 조성을 갖는 블렌드소재가 내후성, 내오존성 및 내기체투과 특성이 뛰어나, O-링이나 전기관련 제품에 상업적으로 응용가능한 것으로 판단되었다.

  • PDF