• Title/Summary/Keyword: Oxygen removal

Search Result 755, Processing Time 0.026 seconds

Enhancing the Oxygen Removal Rate for Its Application in Food Packaging Through the Impregnation of Porous Materials with the Non-metallic Oxygen Scavenger Sodium Metabisulfite (메타중아황산나트륨을 다공성물질에 함침하여 제조한 비금속류 산소제거제의 산소제거속도 향상 및 식품 포장 적용 연구)

  • Suyeon Jeong;Hyun-Gyu Lee;Seung Ran Yoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2024
  • The addition of oxygen scavengers to food products helps to reduce oxygen exposure, thereby mitigating deterioration, including changes in taste, odor, and color, as well as inhibiting microbial growth. Despite the advantages of the existing non-metallic oxygen removal materials in terms of safety for the human body and suitability for use in microwave ovens, their utilization has been limited due to their slow reaction initiation speed. Therefore, in the current study, sodium metabisulfite was impregnated into various porous media, including halloysite nanoclay, activated carbon, montmorillonite, and silica gel. The oxygen scavenger, produced by impregnating silica gel with sodium metabisulfite, demonstrated a 425% improvement in the initial oxygen removal rate compared to pure sodium metabisulfite. Additionally, sachets containing an oxygen-removing composition with an enhanced oxygen removal rate effectively decreased the oxygen concentration to less than 0.5% on the third day of storage in apple packaging, without elevating carbon dioxide levels. Moreover, it proved effective in preventing the browning of the apple surface. Therefore, the SM/SG oxygen-removal composition can be effectively applied to active food packaging by controlling the oxygen concentration within the packaging.

Removal of Dissolved Oxygen from the Make-up Water of NPP Using Membrane-based Oxygen Removal System

  • Chung, Kun-Ho;Kang, Duck-Won;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.541-547
    • /
    • 1999
  • Corrosion control, in the end-shield cooling system of Wolsung Nuclear Power Plant, is directly related to the control of dissolved oxygen (DO). The current method, being used to deoxygenate the end-shield cooling water, is a chemical treatment by addition of reducing agent, hydrazine, to react with DO. This method has several limitations including high reaction temperature of hydrazine , unwanted explosive hydrogen gas production, and its intrinsic harmful property. A new approach to remove DO using a membrane-based oxygen removal system (MORS) was tried to overcome limitations of the hydrazine treatment. The DO removal efficiency of the MORS was found to be in the range 87% to 98%: The higher vacuum, the lower water flow rate and the higher water temperature tend to increase the DO removal efficiency.

  • PDF

The Investigation of CF4 Decomposition in Methane Premixed Flames on Oxygen Enrichment (산소부화된 메탄 예혼합 화염에서 CF4 분해에 대한 연구)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.51-56
    • /
    • 2017
  • The decomposition of tetrafluoromethane has been investigated with the reaction mechanism proposed for freely propagating $CH_4/CF_4/O_2/N_2$ premixed flames on the oxygen enrichment. The factors affecting on the removal efficiency of tetrafluoromethane were analyzed. The increase in flame temperature due to oxygen enrichment has a great influence on the removal efficiency of tetrafluoromethane. At the same oxygen enrichment condition, the removal efficiency in the rich flame is higher than one in the lean flame. The increase of the F/H ratio leads to decrease the flame temperature and the removal efficiency of tetrafluoromethan is decreased at the flame temperature of 2600 K or lower, The elementary reactions that dominate the consumption of tetrafluoromethane are (R1) $CF_4+M=CF_3+F+M$ and (R2) $CF_4+H=CF_3+HF$. (R1) has the greatest effect on the consumption of tetrafluoromethane under the oxygen enhanced flames.

Effect of NADH-Dependent Enzymes Related to Oxygen Metabolism on Elimination of Oxygen-Stress of Bifidobacteria (NADH요구 산소대사관련 효소가 bifidobacteria의 산소스트레스 제거에 미치는 영향)

  • Ahn, Jun-Bae;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.951-956
    • /
    • 2005
  • Selection of oxygen-tolerant strains and elucidation of their oxygen tolerance mechanism were crucial for effective use of bifidobacteria. Oxygen-tolerant bifidobacteria were able to significantly remove environmental oxygen (oxygen removal activity) as compared to oxygen-sensitive strains. Most oxygen removal activity was inhibited by heat treatment and exposure to extreme pH (2.0) of bifidobacterial cell. NADH oxidase was major enzyme related to oxygen removal activity. Oxygen-tolerant bifidobacteria possessed high NADH peroxidase activity level to detoxify $H_2O_2$ formed from reaction of NADH oxidase. Addition of oxygen to anaerobic culture broth significantly increased activities of HADH oxidase and NADH peroxidase within 1hr and rapid increment of oxygen concentration was prevented. Results showed NADH oxidase and NADH peroxidase of oxygen-tolerant bifidobacteria played important roles in elimination of oxygen and oxygen metabolite $(H_2O_2)$.

Treatment Characteristics of Paper-mill Wastewater Using Pure Oxygen Activated Sludge Process (순산소 활성오니 공정을 이용한 제지폐수의 처리특성)

  • Kim, Sung Soon;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.27-34
    • /
    • 1999
  • An experimental study on improvement of the paper-mill wastewater treatment using the pure oxygen activated sludge process was conducted. The effects of hydraulic retention time(HRT) and BOD loading on organic removal efficiency were investigated. The BOD removal efficiencies were above 90% under all examined HRTs except for HRT of 3 hours. The increase of HRT from 3 hours to 6 hours, and to 12 hours significantly improved BOD and COD removal efficiencies, respectively. However, additional increase of HRT did not affect organic removal efficiency. F/M ratio change at fixed HRT did not affect organic removal efficiency. However, F/M ratio investigated in this study(0.11~1.98kgBOD/kgMLVSS/day) was 5 times greater in maximum than that of conventional activated sludge process, which implies that pure oxygen activated sludge process can treat wastewater with high organic strength. Under the same HRT, the volumetric BOD loading change cause no effect on organic removal efficiency also.

  • PDF

Dissolved Oxygen Removal in a Column Packed with Catalyst

  • Lee, Han-Soo;Hongsuk Chung;Cho, Young-Hyun;Ahn, Do-Hee;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.482-487
    • /
    • 1996
  • The dissolved oxygen removal by H$_2$-O$_2$ reaction in column packed with various catalysts wes examined. The catalysts employed were the prepared polymeric catalyst platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feed water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removal of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst.

  • PDF

Oxygen Removal Performance of M/γ-Al2O3 Catalyst through H2-O2 Recombination Reaction and the Effect of Oxygen Vacancies on the Catalyst (H2-O2 재결합 반응을 통한 M/γ-Al2O3 촉매의 산소 제거 성능과 산소 결손이 촉매에 미치는 영향)

  • TAEJUN KIM;PUTRAKUMAR BALLA;DAESEOB SHIN;YOUJUNG SONG;SUNGTAK KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.535-548
    • /
    • 2023
  • The intermittent nature of renewable energy is a challenge to overcome for safety and stable performance in water electrolysis systems linked to renewable energy. Oxygen removal using the catalyst is suitable for maintaining the oxygen concentration in hydrogen below the explosive level (4%) even in intermittent power supply. Metals such as Pd, Pt, and Ni are expected to be effective materials due to their hydrogen affinity. The oxygen removal performance was compared under high hydrogen concentration conditions by loading on γ-Al2O3 with high reactivity and large surface area. The characteristics of the catalyst before and after the reaction were analyzed through X-ray diffraction, transmission electron microscope, H2-temperature programmed reduction, X-ray photoelectron spectroscope, etc. The Pd catalyst that showed the best performance was able to lower 2% oxygen to less than 5 ppm. Changes in catalyst characteristics after the reaction indicate that oxygen vacancies are related to oxygen removal performance and catalyst deactivation.

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).