• Title/Summary/Keyword: Oxygen pressure

Search Result 1,966, Processing Time 0.025 seconds

Explosion Risk of 2-Ethylhexanoic Acid (2-Ethylhexanoic Acid의 폭발위험성에 관한 연구)

  • Kim, Won-Kil;Kim, Jung-Hun;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.20-25
    • /
    • 2015
  • In order to examine the explosion risk of 2-ethylhexanoic acid, we experimentally studied the explosion limit, explosion pressure, and rate of increase of the explosion pressure at different oxygen concentrations. The lower explosion limit was 3.2% at a temperature of $100^{\circ}C$, and the oxygen concentration was 40 to 70%. The upper explosion limit was 4.5% and the lower explosion limit was 4.0% at an oxygen concentration of 21%.The maximum explosion pressure of 2-ethylhexanoic acid was 1.4161 MPa at an oxygen concentration of 70%, and the rate of increase of the explosion pressure was 62.692 MPa/s at this concentration.

Alterations in $O_2$ Uptake Following Hemorrhage and Transfusion in Rats (실혈 후 및 혈압상승 후의 소화기 조직 혈액량 및 산소 섭취량 -제 2 편 동맥 혈압하강과 산소 섭취량 감소-)

  • Yoon, Byong-Hak;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 1968
  • Total body oxygen uptake was measured in rats following hemorrhage (16 rats) and blood transfusion (7 rats) under light Nembutal anesthesia. Arterial blood Pressure measured on the tail artery decreased or increased following hemorrhage or transfusion. No direct relationship was observed between arterial blood pressure alteration and oxygen intake variation. Hematocrit ratio which changed after hemorrhage or transfusion showed a direct relationship with oxygen intake. Decrease in hematocrit ratio resulted in a decrease in oxygen intake of rats. The correlation coefficient between decrement of hematocrit ratio and decrement of oxygen intake was r=.56. The correlation coefficient between increment of hematocrit ratio and increment of oxygen intake was r=.86. Thus it was concluded that alteration in oxygen intake was limited by the systemic oxygen transport capacity of blood.

  • PDF

A study on the characteristics of inner cell pressure for sealed type Ni-MH rechargeable battery using Zr-based hydrogen storage alloy as anode (Zr-based 수소저장합금을 음극으로 사용한 밀패형 Ni-MH 2차전지의 내압특성에 관한 연구)

  • Kim, Dong-Myung;Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.2
    • /
    • pp.79-90
    • /
    • 1997
  • Extensive work has been done on investigating the inner cell pressure characteristics of sealed type Ni-MH battery in which Zr-Ti-Mn-V-Ni alloy is used as anode. The inner cell pressure of this type Ni-MH battery much more increases with the charge/discharge cycling than that of the other type Ni-MH battery where commercialized $AB_5$ type alloy is used as anode. The increase of inner cell pressure in the sealed type Ni/MH battery using Zr-Ti-Mn-V-Ni alloy system is mainly due to the accumulation of oxygen gas during charge/discharge cycling. The accumulation of oxygen gas arises mainly due to the low rate of oxygen recombination on the MH electrode surface during charge/discharge cycling. The difference of oxygen recombination rate between $AB_5$ type electrode and Zr-Ti-Mn-V-Ni electrode is caused by the difference of electrode reaction surface area resulting from different particle size after their activation and the difference of surface catalytic activity for oxygen recombination reaction, respectively. After EIS analysis, it is identified that the surface catalytic activity affects much more dominantly on the oxygen recombination reaction than the reaction surface area does. In order to suppress the inner cell pressure of Ni-MH battery where Zr-Ti-Mn-V-Ni is used as anode, it is suggested that the surface catalytic activity for oxygen recombination should be improved.

  • PDF

Electrical Conductivities of [(CeO2)1-x(ZrO2)x]0.8(SmO1.5)0.2 Solid Solution ([(CeO2)1-x(ZrO2)x]0.8(SmO1.5)0.2 고용체의 전기전도도)

  • 이충연;김영식;김남철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.775-782
    • /
    • 2003
  • In the study, the total conductivies in [(Ce $O_2$)$_{1-x}$ (Zr $O_2$)$_{x}$]$_{0.8}$(Sm $O_{1.5}$)$_{0.2}$ (x- 0, 0.05, 0.1, 0.2) solid solution were measured as a function of temperature and oxygen partial pressure between 80$0^{\circ}C$ and 1,00$0^{\circ}C$ using 4-probe d.c method. Under pure oxygen atmospere, the oxygen ionic conductivity of [(Ce $O_2$)$_{1-x}$ (Zr $O_2$)$_{x}$]$_{0.8}$(Sm $O_{1.5}$)$_{0.2}$ decreased with the concentration of Zr $O_2$At high oxygen partial pressure, the electrical conductivity is almost independent of oxygen partial pressure and decreased with the increase in Zr content. However, the electrical conductivity increase with decreasing oxygen partial pressure and is almost independent of Zr content at low oxygen partial pressure. Empirically, Total conductivity( $\sigma$ ) was expressed by the p$o_{2}$ -independent conductivity as $\sigma$$_{i}$, and the $p_{-1/4}$ $o_{2}$sup -dependent part as $\sigma$$_{e}$. Total, ionic and electronic conductivities fitted by data enabled to determine the transference number. The ionic transference number( $t_{i}$ ) decreased while the electronic transference( $t_{e}$ ) increase with the increase in Zr content and p$o_{2}$.

Analysis of Flow Characteristic and Optimum Design for Subminiature Pressure Reducer Under High Pressure (고압 적용용 초소형 감압기 설계를 위한 유동 해석 및 최적 설계)

  • Lee, WonJun;Baek, JongTae;Yun, Rin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.497-503
    • /
    • 2017
  • A theoretical study on oxygen flow is fundamental to comprehend the practical production of an oxygen respirator and its stability. In this study, an orifice-type pressure-reducing component was designed for the newly developed oxygen respirator, using the commercial CFD tool, COMSOL Multiphysics, which increases its operational time compared to the existing component. The orifice was optimized by changing the length by 3, 6, and 9 mm within the entire computational domain of the oxygen respirator. Based on an oxygen flow rate of 0.028 kg/s, the oxygen respirator equipped with the newly developed orifice satisfied the flow rate within 33% for a respirator inlet pressure of 300 bar, and within 32.7% for 50, 75, and 100 bar. In terms of component manufacturing, the orifice length was selected as 3 mm, which removes additional changes to the existing component.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

Effects of Abdominal Breathing on Anxiety, Blood Pressure, Peripheral Skin Temperature and Saturation Oxygen of Pregnant Women in Preterm Labor (복식호흡이 조기진통 임부의 불안, 혈압, 말초 피부온도와 산소 포화도에 미치는 효과)

  • Chang, Soon-Bok;Kim, Hee-Sook;Ko, Yun-Hee;Bae, Choon-Hee;An, Sung-Eun
    • Women's Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • Purpose: This study was done to examine the effects of abdominal breathing on VAS-Anxiety (VAS-A), blood pressure, peripheral skin temperature and saturation oxygen in pregnant women in preterm labor. Method: The study design was a matched control group interrupted time series. Forty-six women matched to gestational age were assigned to either the experimental group (26) or control group (20). Data were collected between March 2007 and May 2008. For the experimental treatment the women performed abdominal breathing 30 times, which took 5 minutes, and did one set of 5-minute abdominal breathing daily for three days. Data collection was done before and after the abdominal breathing to measure VAS-A, blood pressure, peripheral skin temperature and oxygen saturation. Descriptive, $X^2$, Mann-Whitney U tests were used to analyze the data with the SPSS/PC+Win 15.0 program. Result: For the experimental group there were significant decreases in VAS-A (Z=-4.37, p=.00), systolic blood pressure (Z=-3.38, p=.00), and an increase in skin temperature (Z=-4.50, p=.00) and oxygen saturation (Z=-3.66, p=.00). Conclusion: These findings suggest that abdominal breathing in pregnant women in preterm labor results in decreases in anxiety(VAS-A) including biological evidences such as systolic blood pressure, and increases in peripheral skin temperature and oxygen saturation. Further longitudinal study is needed on the lasting effects and obstetric and neonatal outcomes following abdominal breathing.

  • PDF

Effects of changing the oxygen partial pressure in cooling after deposition of PZT thin films by reactive sputtering (Reactive sputtering법에 의한 PZT 박막 증착후 냉각시 산소분압의 영향에 관한 연구)

  • 이희수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.406-414
    • /
    • 1996
  • We studied the phase formation and the effect of electrical properties of PZT thin films with changing the oxygen partial pressure in cooling after deposition of PZT thin film by reactive sputtering method. The roughness of thin film increased with decreasing the oxygen partial pressure in cooling due to the evaporation on the surface ofthin films and the grain size was not changed very much. The hysteresis property of PZT thin film was improved toward having a good squareness with increasing the cooling oxygen partial pressure. We observed the decrease of remanent polarization, retained polarization and coercive field with decreasing the oxygen partial pressure. Dielectric constant decreased gradually and internal bias field increased in the measurement of dielectric constant-voltage property with decreasing cooling oxygen partial pressure. We observed the increase of nonswitched polarization in the measurement of field accelerated retention and the decrease of nonswitched polarization with increasing the bias time.

  • PDF

Effect of Oxygen Pressure on the Structure Properties of Mg0.5Zn0.5O Thin Films Grown by Pulsed Laser Deposition (PLD 법으로 증착된 Mg0.5Zn0.5O 박막의 산소 분압 변화에 따른 구조적 특성)

  • Kim, Chang-Hoi;Kim, Hong-Seung;Lee, Jong-Hoon;Park, Mi-Seon;Pin, Min-Wook;Lee, Won-Jae;Jang, Nak-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.717-722
    • /
    • 2012
  • In this work, we study on the effects of the oxygen pressure on the structural and crystalline of MgZnO thin films. MgZnO thin films were deposited on p-Si (111) substrates by using pulsed laser deposition. The X-ray diffraction analysis and energy-dispersive X-ray results revealed that as the oxygen pressure increased and Mg content in the MgZnO films decreased. Also Crystal structure was changed from cubic rock salt to hexagonal wurtzite. Alpha step and atomic force microscopy results showed that the thickness of the films are about 100 nm, and it has been found that the MgZnO (002) preferred orientation were deposited with increasing the oxygen pressure. Therefore, the effect of the preferred orientation, the crystallization grew in the form of the columnar; Grain size and RMS of the films were increased with increasing oxygen pressure.

Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio (산소분압비에 따른 ZnO 박막의 성장특성)

  • Kang, Man-Il;Kim, Moon-Won;Kim, Yong-Gi;Ryu, Ji-Wook;Jang, Han-O
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.204-210
    • /
    • 2008
  • ZnO thin films were grown on a glass by RF sputtering system with RF power 100W and oxygen partial pressure of $0%{/sim}30%$. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 1.5 to 3.8eV. Also, scanning electron microscope(SEM) was used for the analysis of surface crystallization condition. From elliptic constants spectra, optical constants, thickness and roughness of ZnO films were evaluated. Total thickness of ZnO films obtained by ellipsometry showed good agreement with SEM data. It was found that the grain size of the films were getting smaller with increasing oxygen partial pressure. Band-gap of ZnO films increase with the oxygen partial pressure. These findings clearly indicate that optical properties of ZnO films are strongly dependent on the oxygen partial pressure. It could be explained that increasing the oxygen partial pressure induced high crystalline imperfection in the ZnO films.