Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.9.717

Effect of Oxygen Pressure on the Structure Properties of Mg0.5Zn0.5O Thin Films Grown by Pulsed Laser Deposition  

Kim, Chang-Hoi (Department of Nano Semiconductor Engineering, Korea Maritime University)
Kim, Hong-Seung (Department of Nano Semiconductor Engineering, Korea Maritime University)
Lee, Jong-Hoon (Department of Nano Semiconductor Engineering, Korea Maritime University)
Park, Mi-Seon (Department of Nano Technology, Dong Eui University)
Pin, Min-Wook (Department of Nano Technology, Dong Eui University)
Lee, Won-Jae (Department of Nano Technology, Dong Eui University)
Jang, Nak-Won (Department of Nano Semiconductor Engineering, Korea Maritime University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.9, 2012 , pp. 717-722 More about this Journal
Abstract
In this work, we study on the effects of the oxygen pressure on the structural and crystalline of MgZnO thin films. MgZnO thin films were deposited on p-Si (111) substrates by using pulsed laser deposition. The X-ray diffraction analysis and energy-dispersive X-ray results revealed that as the oxygen pressure increased and Mg content in the MgZnO films decreased. Also Crystal structure was changed from cubic rock salt to hexagonal wurtzite. Alpha step and atomic force microscopy results showed that the thickness of the films are about 100 nm, and it has been found that the MgZnO (002) preferred orientation were deposited with increasing the oxygen pressure. Therefore, the effect of the preferred orientation, the crystallization grew in the form of the columnar; Grain size and RMS of the films were increased with increasing oxygen pressure.
Keywords
MgZnO; Pulsed laser deposition; Oxygen pressure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. D. Shannon, Acta Crystallogr. Sect., A32, 751 (1976)
2 C. X. Wu, Y. M. Lu, D. Z. Shen, and X. W. Fan, Chinese Sci Bull., 55, 90 (2010).   DOI
3 X. Chen and J. Kang, Semicond. Sci. Technol., 23, 025008 (2008).   DOI
4 A. Kaushal and D. Kaur, Sol. Energ. Mat. Sol. C., 93, 193 (2009).   DOI
5 S. C. Su, Y. M. Lu, Z. Z. Zhang, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, Appl. Surf. Sci., 254, 4886 (2008).   DOI
6 B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan, and X. Z. Zhao, J. Appl. Phys., 101, 033713 (2007).   DOI   ScienceOn
7 D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun., 99, 873 (1996).   DOI
8 W. W. Wensa, A. Yamada, K. Takahashi. M. Yoshino, and M. Konagai, J. Appl. Phys., 70, 7119 (1991).   DOI
9 H. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004).   DOI   ScienceOn
10 D. C. Look, Mater. Sci. Eng., B80, 383 (2001).   DOI   ScienceOn
11 H. Tanaka, S. Fujita, and S. Fujita, Appl. Phys. Lett., 86, 192911 (2005).   DOI
12 T. Takagi, H. Tanaka, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., 42, L401 (2003).   DOI
13 Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys. Lett., 76, 559 (2000).   DOI   ScienceOn
14 A. Ohotomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998).   DOI   ScienceOn
15 A. Kaushal and D. Kaur, Sol. Energ. Mat. Sol., C93, 193 (2009).   DOI
16 S. Sadofev, S. Blumstengel, J. Cui, J. puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett., 87, 091903 (2005).   DOI