• Title/Summary/Keyword: Oxygen penetration depth

Search Result 27, Processing Time 0.019 seconds

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun;Jongbeom Kwon;Sunhwa Park;Young Kim;Kyungjin Han
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

The Characteristics of Oxygen Deficient Water Mass in Gamak Bay (가막만 빈산소 수괴의 특성)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Yu, Jun;Choi, Yang-Ho;Jung, Chang-Su;Lee, Pil-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2006
  • To clarify the formation process and characteristics of oxygen deficient water mass in Gamak Bay, oxygen deficiency was weekly observed from 17 June to 12 September 2005. Surface water temperature was significantly lower in the outer bay than in the inner bay, whereas the bottom water temperature was higher in the central area of bay than in the outer and inner bay. The vertical stratification of water mass was strongly formed during the period, and thermocline was observed between 3 and 5m deep. The oxygen deficiency in the bottom layer began to appear at early July in the inner bay and gradually spread to the center area of the bay in early August. The mean transparency and light attenuation coefficient($K_d$) in water mass was 4.0m and 0.47, respectively. Average concentrations of nutrient and chlorophyll ${\alpha}$ in the bottom layer were significantly higher than those in surface, and those concentrations were significantly higher in the inner bay than in the outer bay. During the formation of oxygen deficiency in the bottom layer, oxygen penetration depth in the bottom sediment were extremely shallow, and oxygen consumption rate in the bottom sediment were lower than that in the area where oxygen deficient water mass disappeared. Dissolved oxygen concentrations in the bottom layer are negatively correlated with nutrient concentrations, whereas those in the surface layer did not show a significant relationship with nutrient concentrations. Elevated loss of oxygen in the bottom water mass was attributed to the increase of the oxygen consumption rates in sediments and the decomposition of organic matter by microorganism.

  • PDF

Oxidation resistnace of TaSiN diffusion barrier layers for Semiconductor memory device application (반도체 메모리 소자 응용을 위한 TaSiN 확산 방지층의 산화 저항성)

  • Shin, Woong-Chul;Lee, Eung-Min;Choi, Young-Sim;Choi, Kyu-Jeong;Choi, Eun-Suck;Jeon, Young-Ah;Park, Jong-Bong;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.749-764
    • /
    • 2000
  • Amorphous TaSiN thin films of about 90 nm thick were deposited onto poly-Si and $SiO_2/Si$ substrates by rf magnetron sputtering method. TaSiN films exhibited amorphous phase with no crystllization up to $900^{\circ}C$ in oxygen ambient. The penetration depth of oxygen diffusion increased with increasing annealing temperature in oxygen ambient and reached 20 nm deep in a $Ta_{23}Si_{29}N_{48}$ layer at $600^{\circ}C$ for 30min. The resistivity of as-deposited $Ta_{23}Si_{29}N_{48}$ thin films was about $1,300{\mu}{\Omega}-cm$, however those of annealed films markedly increased above $700^{\circ}C$ in oxygen ambient as the annealing temperature increased.

  • PDF

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

Interstitial Photodynamic Therapy (PDT) Set-up for Treating Solid Tumor Using Laser Diode (레이저 다이오드를 이용한 고형암 치료를 위한 간질성 광역학 치료법 개발)

  • Kim Jong-Ki;Kim Ki-Hong
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2005
  • Photodynamic therapy (PDT) is one of the expectable current cure operation methods. Tumor tissue is treated by abundant oxygen in a body and generated singlet or free radical from exterior laser diode and photosensitizer. Current problem of PDT is the low penetration power of the light beam in a deep seated large tumor and solid tumor thus results in low treatment outcome. In the study, we tried to develop interstitial photodynamics therapy treatment to solve this problem. As the accurate determination of light dosimetry in biological tissue is one of the most important factors affecting the effectiveness of PDT, parameters used in this study are the optical property of biological tissue. Since biological tissues have large scattering coefficient to visible light the penetration depth of a biological tissue in visible light region is only $15\~20$ mm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well. Based on the MC simulation study, the effectiveness of interstitial photodynamic therapy on tumor control in solid tumor was proved through in vivo animal experiment.

  • PDF

Surface analysis of reactively ion-etched aluminum films in $CF_4$ plasma ($CF_4$ 플라즈마에서 반응성 이온식각한 알루미늄 박막의 표면분석)

  • 김동원;이원종
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.351-357
    • /
    • 1995
  • The surface layer of the aluminum film reactively ion etched in $CF_4$ plasma was ana alyzed by using XPS. $AlF_3$ which is nonvolatile is formed at the aluminum surface. As the analyzed depth increases, the intensity of the $Al_{2p}$ peak of Al - F bonds decreases while that of a aluminum metallic bond increases. The thickness of the $AlF_x$ surface layer is 50~100 $\AA$ and the deep penetration of fluorine atoms is attributed to the mixing effect by the bombardment of incident particles. For the aluminum oxide film which is etched in $CF_4$ plasma under the same conditions, oxygen atoms are substituted by fluorine atoms to form $$AIF_x$ surface layer, which is m much thinner than that formed on aluminum surface.

  • PDF

Effects of Coal Particle Array on Coal Combustion (미분탄 입자들의 배열이 미분탄 연소에 미치는 영향)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1321-1328
    • /
    • 2005
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis indicate that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increase due to flow acceleration. When the vertical particle spacing is smaller than $6R_0$, volatile release and carbon conversion ratio of the second particle decrease due to reduction of flame penetration depth and interference of oxygen diffusion by the first particle.

The Effects of the Spat Planting Time and Environmental Factors in the Arkshell, Scapharca broughtonii Schrenck Culture (피조개(Scapharca broughtonii Schrenck) 양식시 살포시기와 환경 특성의 영향)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Jung, Choon-Goo;Jung, Chang-Su;Son, Sang-Gyu
    • Journal of Aquaculture
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • To find out the effect of the spat planting time and environmental factors in the arkshell, Scapharca broughtonii (Schrenck), we investigated the growth, survival rate of arkshell and habitat characteristics in Gamak Bay, Yeoja Bay and Saryang Island. We planted artificial spats of arkshell in Gamak Bay and Yeoja Bay at November 2004, and also planted domestic and Chinese natural spats in Saryang Island at March 2005. We measured growth, survival rate of arkshell, physiochemical parameters of the water mass (water temperature, salinity, dissolved oxygen, nutrients and chlorophyll a) and characteristics of the sediment (oxygen penetration depth, oxygen microprofiles, ignition loss and chemical oxygen demand) by monthly. The cumulative survival ratio of arkshell in Gamak Bay was the highest at December, whereas the ratio of arkshell in Yeoja Bay was recorded as 0% at October. The monthly growth rates of arkshell length in Gamak Bay and Yeoja Bay were the highest in May and the growth rate of the Korean arkshell in Saryang Island was higher than Chinese ones significantly. The high mortality (> 65%) of the arkshell in Yeoja Bay during summer probably caused by high water temperature, inflow of low salinity water, and low dissolved oxygen concentration in sediment. The concentrations of nutrient and sediment COD were considered to play an important role in the monthly survival ratio of arkshell in Gamak Bay and Sarayng Island. We suggest that the growth and mortality of arkshell might be influenced to the planting time of spat and the habitat characteristics.

Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network (지하수수질측정망 자료를 활용한 경남지역 지하수 수질: 배경수질전용측정망에 의한 심도·지질별 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.39-54
    • /
    • 2020
  • This study analyzed the groundwater quality according to the depth and geological features in Gyeongsangnam-do area using groundwater quality monitoring network data to grasp the groundwater quality characteristics and to provide basic data for policy making on efficient groundwater management. Five hundred and three data sets were acquired from background water quality exclusive monitoring network in soil groundwater information system for five years (2013 ~ 2017). Except for the total coliforms and tracer items such as mercury, phenol, and others, the parameters of water quality were significant or very significant, depending on depth and geological features. As the depth got deeper, the average value of pH and electrical conductivity increased; water temperature, dissolved oxygen, oxide reduction potential, arsenic, total coliforms, and turbidity decreased; and total unfit rate for drinking water standards was lower. It was found that the sum of the positive and negative ions was the highest in the clastic sedimentary rock and the lowest in metamorphic rock. The total unfit rate for drinking water standards was the highest for metamorphic rocks, followed by clastic sedimentary rock and unconsolidated sediments and, finally, intrusive igneous rock with the lowest penetration. The Na-Cl water type, which indicated the possibility of contamination by external pollutants, appeared only at some points in shallow depths and in clastic sedimentary rocks.

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.