DOI QR코드

DOI QR Code

Effects of Coal Particle Array on Coal Combustion

미분탄 입자들의 배열이 미분탄 연소에 미치는 영향

  • Published : 2005.12.01

Abstract

The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis indicate that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increase due to flow acceleration. When the vertical particle spacing is smaller than $6R_0$, volatile release and carbon conversion ratio of the second particle decrease due to reduction of flame penetration depth and interference of oxygen diffusion by the first particle.

Keywords

References

  1. Musarra, S. P., Fletcher, T. H., Niksa, S. and Dwyer, H. A., 1986, 'Heat and Mass Transfer in the Vicinity of a Devolatilizing Coal Particle,' Combust. Sci. and Tech., Vol. 45, pp. 289-307 https://doi.org/10.1080/00102208608923858
  2. Beck, N. C. and Hayhurst, A. N., 1990, 'The Early Stages of the Combustion of Pulverlized Coal at High Temperatures I : The Kinetics of Devolatilization,' Combust. Flame, Vol. 79, pp. 47-74 https://doi.org/10.1016/0010-2180(90)90087-8
  3. Makino, A., 1992, 'An Approximate Explicit Expression for the Combustion Rate of a Small Carbon Particle,' Combust. Flame, Vol. 90, pp. 143-154 https://doi.org/10.1016/0010-2180(92)90116-7
  4. He, R., Suda., T., Fujimori, T. and Sato, J., 2003, 'Effects of Particle Sizes on Transport Phenomena in Single Char Combustion,' Int. J. Heat. Mass Transfer, Vol. 46, pp. 3619-3627 https://doi.org/10.1016/S0017-9310(03)00169-8
  5. McLean, W. J., Hardesty, D. R. and Pohl, J. H., 1981, 'Direct Observations of Devolatilizing Pulverized Coal Particles in a Combustion Environment,' 18th Symp. (Int.) on Combust., The Combustion Institute, pp. 1239-1255
  6. Choi, S. M., 1990, 'Observation of Volatile Cloud Formation During the Early Stages of Pulverized Coal Combustion,' KSME int. J., Vol. 4, No.1, pp. 71-77 https://doi.org/10.1007/BF02953393
  7. Cho, H. C., Park, J. K. and Shin, H. D., 1999, 'Effect of Heating Rate on the Behavior of the Flame Front in the Pulverized-Coal Flame,' Trans. of the KSME B, Vol. 23, No.5, pp. 687-694
  8. Liakos, H. H., Theologos, K.N., Boudouvis, A.G. and Markatos. N.C .. 2001. 'The Effect of Pressure on Coal Char Combustion,' Applied Thermal Engineering, Vol. 21, pp. 917-928 https://doi.org/10.1016/S1359-4311(00)00100-9
  9. Niksa, S., Liu, G. and Hurt, R. H., 2003, 'Coal Conversion Submodels for Design Application at Elevated Pressures. Part I: Devolatilization and Char Oxidation,' Progress in Energy and Combustion Science, Vol. 29, pp. 425-477 https://doi.org/10.1016/S0360-1285(03)00033-9
  10. Poling, B. E., Prausnitz, J. M. and O'Connell, J. P., 2001, 'The Properties of Gases and Liquids,' McGraw Hill, New York
  11. Westbrook, C. K. and Dryer, F. L., 1981, 'Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,' Combust. Sci. and Tech., Vol. 27, pp. 31-43 https://doi.org/10.1080/00102208108946970
  12. Freihaut, J. D., 1980, 'A Numerical and Experimental Investigation of Rapid Coal Pyrolysis,' Ph.D. Thesis, Pennsylvania State University
  13. Zhou, L. X., 1986, 'Combustion Theory and Chemical Fluid Dynamics,' Science Press, Moscow
  14. Li, Z. Q., Wei, F. and Jin, Y., 2003, 'Numerical Simulation of Pulverized Coal Combustion and No Formation,' Chem. Eng. Sci., Vol. 58, pp. 5161-5171 https://doi.org/10.1016/j.ces.2003.08.012
  15. Cho, C. P. and Kim, H. Y., 2003, 'The Effects of Droplet Arrangement on the Vaporization and Combustion Characteristics of Liquid Fuel Droplets,' J. of The Korean Society of Combustion, Vol. 8, No.2, pp. 17-26
  16. Kim, H. Y., Cho, C. P. and Chung, J. T., 2005, 'Correlation of Burning Rate of the Interacting Liquid Droplets with Internal Circulation,' JSME International Journal, Series B, Vol. 48, No.2, pp. 293-299 https://doi.org/10.1299/jsmeb.48.293
  17. Tsai, G. T. and Yang, J. T., 1994, 'Numerical Analysis of Convective Ignition and Flame Development over a Porous Sphere,' Combust. Sci. and Tech., Vol. 96, pp. 1-21 https://doi.org/10.1080/00102209408935343
  18. Smith, I. W., 1971, Comb. Flame, Vol. 17, p. 421 https://doi.org/10.1016/S0010-2180(71)80065-2