• 제목/요약/키워드: Oxygen capacity

검색결과 680건 처리시간 0.03초

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권5호
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

산소부하 연소 시스템을 이용한 폐기물 열처리에 관한 연구 (The Study of Waste Treatment using Advanced Oxygen Enriched Combustion System)

  • 이건주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.231-239
    • /
    • 2003
  • In this study, the waste of landfill was treated using advanced enriched oxygen combustion system. The oxygen concentration of this study was 21%, 25%, 30% and 40% and the operating capacity was 200 g/min and the residence time was 10 minutes. As increased the oxygen concentration of combustion air. temperature of the incinerator was increased and the temperature was increased rapidly when the oxygen concentration was 30%. As increased the oxygen concentration, the NOx (ppm) of flue gas increase d for thermal NOx, however the CO (ppm) of flue gas decreased according to the increase of combustion efficiency . The optimum operation condition of incineration was obtained when the oxygen concentration is 30%${\sim}$40%. The unburned carbon of ash decreased from 10% to 4% when the oxygen concentration was increased from 21% to 30%, therefore the high combustion efficiency can be obtained if used the oxygen enriched combustion system.

  • PDF

저항운동이 CAD환자와 노인의 유산소 능력에 미치는 영향 (The Effect of Resistance Exercise on Aerobic Capacity for Old Adults and CAD Patients)

  • 윤병곤;진영완;곽이섭
    • 생명과학회지
    • /
    • 제18권11호
    • /
    • pp.1612-1616
    • /
    • 2008
  • 심폐지구력은 질병, 장애, 수명 등과 연관된 중요한 건강 지표이다. 지구성 운동이 대개 심폐지구력향상을 위한 방법으로 알려져 있는 반면 대부분의 저항성 운동은 심폐지구력향상을 위한 좋은 방법으로 고려치 않고 있다. 그러나, 짧은 휴식기간을 가진 저 강도 혹은 중간 강도의 저항성운동은 특히 노인들이나 관상동맥질환을 가진 환자들의 심폐지구력향상에 도움을 줄 수 있을 것이다. 본 총설은 지구성운동과 저항성운동 시의 생리학적변화를 이해하고, 저항성운동이 심폐지구력향상에 도움을 줄 수 있다는 사실을 이론적으로 뒷받침하고자 한다.

실혈 후 및 혈압상승 후의 소화기 조직 혈액량 및 산소 섭취량 -제 2 편 동맥 혈압하강과 산소 섭취량 감소- (Alterations in $O_2$ Uptake Following Hemorrhage and Transfusion in Rats)

  • 윤병학;남기용
    • The Korean Journal of Physiology
    • /
    • 제2권1호
    • /
    • pp.17-21
    • /
    • 1968
  • Total body oxygen uptake was measured in rats following hemorrhage (16 rats) and blood transfusion (7 rats) under light Nembutal anesthesia. Arterial blood Pressure measured on the tail artery decreased or increased following hemorrhage or transfusion. No direct relationship was observed between arterial blood pressure alteration and oxygen intake variation. Hematocrit ratio which changed after hemorrhage or transfusion showed a direct relationship with oxygen intake. Decrease in hematocrit ratio resulted in a decrease in oxygen intake of rats. The correlation coefficient between decrement of hematocrit ratio and decrement of oxygen intake was r=.56. The correlation coefficient between increment of hematocrit ratio and increment of oxygen intake was r=.86. Thus it was concluded that alteration in oxygen intake was limited by the systemic oxygen transport capacity of blood.

  • PDF

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Effect of Ce0.9Gd0.1O1.95 as a promoter upon the oxygen transfer properties of MgMnO3-δ-Ce0.9Gd0.1O1.95 composite oxygen carrier materials for chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.18-23
    • /
    • 2019
  • Chemical looping combustion (CLC) is a promising carbon capture and storage (CCS) technology whose efficiency and cost primarily relies on the oxygen carrier materials used. In this paper, gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.95) was added as a promoter to improve the oxygen transfer rate of MgMnO3-δ oxygen carrier materials. Increasing GDC content significantly increased the oxygen transfer rate of MgMnO3-δ-GDC composites for the reduction reaction due to an increase in the surface adsorption of CH4 via oxygen vacancies formed on the surface of the GDC. On the other hand, the oxygen transfer rate for the oxidation reaction decreased linearly with increasing GDC content due to the oxygen storage ability of GDC. Adsorbed oxygen molecules preferentially insert themselves into oxygen vacancies of the GDC lattice rather than reacting with (Mg,Mn)O to form MgMnO3-δ during the oxidation reaction.

Saccharomyces cerevisiae에서 myo-Inositol 결핍에 의한 Respiratory capacity의 감소

  • 정경환;이준식
    • 한국미생물·생명공학회지
    • /
    • 제24권4호
    • /
    • pp.485-492
    • /
    • 1996
  • myo-Inositol, a growth factor for Saccharomyces cerevisiae (S. cerevisiae), has been known to be incorporated into phosphatidylinositol (PI), which is a kind of phospholipid in the cell membrane, by a membrane-associated PI-synthesizing enzyme. The deficiency of myo-inositol in S. cerevisiae adversely affected the membrane structure and function. On the basis of biochemical functions of myo-inositol, the effect of deficiency of myo-inositol on the aerobic glucose metabolism was investigated by measuring specific oxygen uptake rate (Q$_{O2}$) used as an indicator representing the respiratory capacity of S. cerevisiae in batch and continuous cultures. The respiratory capacity of aerobic glucose metabolism in S. cerevisiae was also monitored after glucose pulse-addition in a continuous culture (D=0.2, 1/hr), in which glucose was utilized through respiratory metabolism. The deficiency of myo-inositol was found to lead to both the decrease of the maximum specific oxygen uptake rate (Q$_{O2max}$) observed from the batch as well as in the continuous culture experiment and the decrease of the respiratory capacity of aerobic glucose metabolism of S. cerevisiae determined from the glucose pulse-addition experiment, in which the glucose flux into respiratory and fermen- tative metabolism was quantitatively analyzed.

  • PDF

Microplate-Based Oxygen Radical Absorbance Capacity (ORAC) Assay of Hydrophilic and Lipophilic Compartments in Plasma

  • Kwak Ho Kyung;Blumberg Jeffrey B.;Chen Chung Yen;Milbury Paul E.
    • Nutritional Sciences
    • /
    • 제9권1호
    • /
    • pp.48-54
    • /
    • 2006
  • Methods have been developed to evaluate the total antioxidant capacity of foods and plasma but limitations are associated with their ability to determine precisely the contribution of lipophilic antioxidants in a lipid milieu as well as interactions among them Thus, we modified the Oxygen Radical Absorbance Capacity (ORAC) assay to determine the peroxyradical scavenging ability of both hydrophilic and lipophilic compartments in plasma The hydrophilic ORAC assay was performed in a phosphate buffer system utilizing 2,2'-azobis (2-amidinopropane) dihydrochloride as a peroxyradical generator and fluorescein as the target The lipophilic ORAC assay was carried out in a dimethylsulfoxide :butyronitrile (DMSO/BN, 9:1 v/v) system using 2,2'-azobis (2,4-dimethyl valeronitrile) as a peroxyradical generator and BODIPY C11 581/591 as the target Analyses were conducted in bovine serum supplemented with water - and lipid - soluble antioxidants and in human plasma. Albumin (0.5$\sim$5 g/dL) and uric acid (0.1$\sim$0.5 $\mu$mol/L) increased hydrophilic ORAC values in a dose-dependent fashion ($R^{2}$=0.97 and 0.98, respectively) but had no impact on lipophilic ORAC values. $\alpha$-Tocopherol (15$\sim$200 $\mu$mol/L) increased lipophilic ORAC values in a dose-dependent fashion ($R^{2}$=0.94); neither $\alpha$-tocopherol nor $\beta$-carotene had an impact on hydrophilic ORAC values. However, addition of $\beta$-carotene at physiological concentration (0.23$\sim$1.86 $\mu$mol/L), either alone or in combination with other carotenoids, had no significant impact on lipophilic ORAC values. Thus, while assays of 'total antioxidant capacity' in biological matrices would be a useful research and clinical tool, existing methods are limited by the lack of complete responsiveness to the full range of dietary antioxidants.