• Title/Summary/Keyword: Oxygen Vacancy

Search Result 234, Processing Time 0.024 seconds

Synthesis and Defect-Structure Analysis of $ThO_2-Tm_2O_3$ Solid Solutions ($ThO_2-Tm_2O_3$ 고용체의 합성 및 결함구조해석)

  • Don Kim;Chang Kwon Kang;Keu Hong Kim;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.491-497
    • /
    • 1987
  • $ThO_2-Tm_2O_3$ (TDT) solid solutions containing 1,3,5,8,10, and 15 mol% $Tm_2O_3$ were synthesized from spectroscopically pure $ThO_2$ and $Tm_2O_3$ polycrystalline powders. The TDT solid solutions were indentified to the fluorite structure by the X-ray powder technique. The values of the lattice parameter were decreased with increasing amount of $Tm_2O_3$ incorporated. But, there was no linearity for the samples containing 8, 10, and 15 mol% $Tm_2O_3$. It was concluded that these samples became incomplete solid solutions. From the intensity analyses of X-ray diffraction patterns, the residual factor was found below 0.13 even for the 15 mol% TDT system. lt was confirmed from the DTA and TGA analyses that any phase transitions did not occur under the experimental condition executed. Comparing the pycnometric density with the lattice parameter obtained from XRD, it was suggested that the predominant defect model be an oxygen vacancy.

  • PDF

Structural and Electrical Properties of (La0.7-xCex)Sr0.3MnO3 Ceramics ((La0.7-xCex)Sr0.3MnO3 세라믹스의 구조적, 전기적 특성)

  • Tae-Yeon In;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.249-254
    • /
    • 2023
  • La0.7-xCexSr0.3MnO3 specimens were fabricated by a solid state reaction method and structural and electrical properties with variation of Ce4+ contents were measured. All specimens exhibited a polycrystalline rhombohedral crystal structure, and the (110) peaks were shifted to low angle side with increasing the amount of Ce4+ contents. As Ce4+ ions with different ion radii and charges are substituted with La3+ ions, electrical properties are thought to be affected by changes in the double exchange interaction between Mn3+-Mn4+ ions due to distortion of the unit lattice, a decrease in oxygen vacancy concentration, and an increase in lattice defects. Resistivity gradually decrease as the amount of Ce4+ added increased, and negative temperature coefficient of resistance (NTCR) properties were shown in all specimens. In the La0.5Ce0.2Sr0.3MnO3 specimens, electrical resistivity, TCR and B-value were 31.8 Ω-cm, 0.55%/℃ and 605 K, respectively.

Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells (H2S를 포함하는 연료를 사용하기 위한 고체산화물 연료전지용 Sr0.92Y0.08Ti1-xVxO3-δ 연료극 특성)

  • Jang, Geun Young;Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Yun, Jeong Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.557-564
    • /
    • 2021
  • Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 ℃ is 19.30 mW/cm2 and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 ℃ was 23.37 mW/cm2 and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.

Preparation of Mesoporous Titanium Oxides by Template Synthesis and Phase Transition of TiO2 inside Mesoporous Silica (주형합성을 통한 메조포러스 TiO2 제조 및 실리카 메조포어 내부에서의 TiO2 상전이 거동 변화)

  • Bang, Gyeong-Min;Kim, Young-Ji;Kim, Seung Han;Choi, Yerak;Lee, In Ho;Ko, Chang Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.261-268
    • /
    • 2018
  • To prepare mesoporous $TiO_2$ ($meso-TiO_2$) with anatase and rutile crystal structures, hydrothermal and template synthesis were used. $Meso-TiO_2$ with anatase structure was obtained by hydrothermal synthesis. The crystal structure of $meso-TiO_2$ by hydrothermal synthesis converted from anatase to rutile by simple heating at $600^{\circ}C$ and above. However, their mesopore structure collapsed due to phase transition. To prepare $meso-TiO_2$ with rutile structure, template synthesis method was applied using mesoporous silica KIT-6 as a template. Once we incorporated anatase $TiO_2$ inside mesopores of silica, the phase transition temperature of $TiO_2$ confined inside KIT-6 was much higher ($900^{\circ}C$) than that of free-standing $TiO_2$ ($600^{\circ}C$). The suppression of $TiO_2$ phase transition inside mesopores of KIT-6 is closely related with the interaction between $TiO_2$ surface and silica walls in KIT-6 because oxygen vacancy in $TiO_2$ is regarded as the starting point for phase transition. After removal of silica template by NaOH solution washing, $meso-TiO_2$ with mixed phase between anatase and rutile was obtained.