• 제목/요약/키워드: Oxygen Separation

검색결과 208건 처리시간 0.026초

연소전 탈탄소화 적용을 위한 $CO_2/H_2$ 하이드레이트 형성 및 분리 연구 ($CO_2$ Separation in Pre-Combustion using Principles of Gas hydrate Formation)

  • 이현주;이주동;이윤석;이은경;김수민;김양도
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.698-698
    • /
    • 2009
  • 화력발전이 많은 비중을 차지하는 전력생산 산업은 온실가스($CO_2$)의 최대 배출 원으로 알려져 있으며 증가하는 전력 수요 뿐 만 아니라 다가오는 기후변화협약에 대응하기 위하여 $CO_2$ 회수 및 공정 개선에 관한 연구가 많이 수행되고 있다. 특히 현재 연구되고 있는 전력분야의 대표적인 $CO_2$ 회수기술은 연소 후 포집(Post-combustion capture), 순산소 연소(Oxy-fuel combustion), 연소전 탈탄소화(Pre-combustion) 3가지로 구분된다. 이중 연소전 탈탄소화 기술은 석탄가스화복합발전(IGCC) 기술과 연계하여 $CO_2$를 회수할 수 있는 방법으로 가스화 된 석탄가스에 Water-Gas Shift 반응과, $CO_2$ 분리로 얻어진 탈 탄소 연료를 통해서 전력을 생산한다. 이 기술의 핵심은 생성된 $CO_2/H_2$ 복합가스로부터 $CO_2$를 분리하는 공정으로 차세대 회수 기술로는 Membrance Reactor, SOFC, Oxygen Ion Transfer Membrane(OTM), 그리고 가스 하이드레이트가 있다. 이중 가스 하이드레이트는 $CO_2$의 회수 뿐 만 아니라 처리 기술에도 적용 가능하지만 우리나라에는 이에 관한 기술이 전무한 형편이다. 본 연구에서는 가스 하이드레이트 형성원리를 이용하여 정온 정압 조건에서 $CO_2/H_2$ 하이드레이트를 제조하였으며 특히, 하이드레이트 형성 촉진제인 THF(Tetrahydrofuran)를 첨가하여 THF 농도에 따른 상평형 및 속도론 실험을 수행 하였다. 이러한 연구는 연소전 탄소화 기술에서의 $CO_2$ 회수 분리에 대한 핵심 연구임과 동시에 탄소배출권 규제에 실질적인 기여를 할 수 있을 것으로 사료된다.

  • PDF

液狀콤포스트化 處理에 있어서 乳牛糞尿의 化學的 特性 (Chemical Properties of Dairy Slurry for Liquid Composting)

  • 홍지형;최병민
    • 한국축산시설환경학회지
    • /
    • 제1권2호
    • /
    • pp.165-171
    • /
    • 1995
  • 액상 폐기물의 자원화 처리 방법의 하나로서 공해방지와 지력증강을 위하여 액상유우 분뇨의 호기성 처리기술을 실용화하는데 기초자료가 되는 액상유우 분뇨의 화학적 특성 분석 결과는 다음과 같다. 1)고액 분리하지 않은 액상유우 분뇨의 고형물 농도(TS)는 7.54(%wb), 산도(pH)는 6.92, 유기물 농도(TS)는 79.34(%TS), 화학적 산소 요구량(COD)은 81,300~96,500(mg/$\ell$), 암모니아태 질소(NH$_3$-N)는 1,690~2,300(mgfe), 및 질산태 질소(NO,-Pf)는 36.0-40.0(mg/$\ell$) 이었다. 2) 고액분리된 액상유우 분뇨의 화학적 특성은 우사형식, 분뇨배출방식, 고액분리기 종류 등에 따라 상이하며 고형물 농도는 4.43~7.95(%wb), 산도(pH)는 7.31, 유기물 농도(VS)는 74.57~79.93(%TS), 화학적 산소 요구량(COD)은 52,400~73,700(mg/$\ell$), 암모니아태 질소(NH$_3$-N)는 2,035~2,960(mg/$\ell$), 질산태 질소(NO$_3$-N)는 19.0~30.0(mg/$\ell$) 의 범위를 나타내고 있었다.

  • PDF

Effects of Discontinuous Percoll Gradient Containing Alpha-linolenic Acid on Characteristics of Frozen-thawed Boar Spermatozoa

  • Kim, Doo-San;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • 한국동물생명공학회지
    • /
    • 제35권1호
    • /
    • pp.58-64
    • /
    • 2020
  • This present study was conducted to investigate protective effect of discontinuous Percoll gradient containing alpha-linolenic acid (ALA) before freezing process on viability, acrosome damage, mitochondrial activity, and oxidative stress of frozen-thawed boar spermatozoa. The separation of spermatozoa by discontinuous Percoll gradient was performed by different concentration of Percoll solution (45/90%) containing ALA combined with bovine serum albumin (BSA), and collected sperm in each Percoll layer was cryopreserved. To evaluate viability, acrosome damage, mitochondrial activity, and reactive oxygen species (ROS) level of frozen-thawed sperm, flow cytometry was used. Morphological abnormalities were observed under light microscope. In results, viability of sperm from 90% Percoll layer was higher than control and 45% Percoll group (p < 0.05). Separated sperm in 90% Percoll layer had lower acrosome damage and morphological abnormalities than control as well as viability, whereas 45% Percoll group was higher (p < 0.05). Similar with acrosome damage and abnormalities, mitochondrial activity was slightly enhanced and the population of live sperm with high ROS level was decreased by 90% Percoll separation, however, there was no significant difference. Supplementation of 3 ng/mL ALA into Percoll solution increased sperm viability and decreased population of live sperm with high ROS compared to control (p < 0.05). In conclusion, discontinuous Percoll gradient before freezing process could improve efficiency of cryopreservation of boar sperm through selection of sperm with high freezing resistance, and supplement of ALA during Percoll gradient might contribute suppression of ROS generation via stabilizing of plasma membrane during cryopreservation.

코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선 (Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface)

  • 김대환;금창헌
    • 한국키틴키토산학회지
    • /
    • 제23권4호
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

Development of Schizogenous and Lysigenous Aerenchyma in Rice Root

  • Kang, Si-Yong;Wada, Tomikichi;Choi, Kwan-Sam
    • 한국작물학회지
    • /
    • 제43권2호
    • /
    • pp.77-82
    • /
    • 1998
  • Aerenchyma development in rice (Oryza sativa L.) roots is quite important for adaptation to waterlogged or reduced soil conditions. Anatomical observations were carried out to clarify the development of schizogenous and lysigenous aerenchyma in elongating crown roots of rice. The crown roots of 3rd and 4th phytomer were taken from rice plants of the 8th leaf stage grown by hydroponic culture. The schizogenous intercellular spaces in the cortex of crown root tip were observed using a light microscope with semi ultra-thin sections and the lysigenous aerenchyma in mature tissue of crown root were observed using a cryo scanning electron microscope (cryo-SEM) with freezing fracture method. The schizogenous intercellular spaces in the root tip exist obviously in the middle portion of cortical cell layers close to the root-root cap junction, but not in root cap, stele and outer cell layers of cortex. The air spaces were formed at the junction of four neighbouring cells of inner cortex in the transverse sections, and between longitudinal cell layer connected along the root axis. Although many of those spaces were filled with liquid, some spaces seem to exist as air spaces. The lysigenous aerenchyma in the cortex, which hardly filled with liquid, emerged at 3-4 cm segment from the root tip and increased toward the basal region of root axis. The developing process of lysigenous aerenchyma was primarily separation of a radial row of cells caused by the shrinking and collapsing of cortical cells and then formation of septa along the radial cell rows by the fusion of cell wall with each other. These results suggest that the schizogenous and lysigenous aerenchyma playa role as a passage for the movement of oxygen into the root tip region where oxygen is required for respiration.

  • PDF

전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용 (Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process)

  • 박병흥;정상문
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.291-299
    • /
    • 2018
  • 파이로 공정에서는 사용후핵연료 관리 공정 개발의 일환으로 산화 우라늄을 고온 용융염 전해질계에서 전기화학적 방법으로 환원시키기 위한 전해환원 공정이 개발되고 있다. 이에 따른 전해환원 공정의 반응기 설계를 위해서는 전기화학적 이론에 기초한 모델이 요구되고 있다. 본 연구에서는 상 분리를 설명하는 phase-field 이론에 기초하여 우라늄 산화물의 전해환원 모사를 위한 1차원 모델이 개발되었다. 모델은 우라늄 산화물 내 산소 원소의 확산과 펠렛 표면에서 전기화학 반응 속도를 나타내는 매개변수를 사용하여 외부로부터 내부로 진행되는 전해환원을 잘 모사하고 있으며 계산 결과 전체 전류는 산소원소의 내부 확산에 크게 의존하는 것으로 나타났다. 전해환원 반응에 대한 모델은 대용량 장치 설계에 최적화된 조건 도출에 활용될 것으로 예상되며 장치 설계가 완료되면 공정 연계 모사에 직접 사용될 것으로 기대된다.

BIOLOGICAL ACTIVITES OF PLANT LEAF EXTRACTS; AVAILABILITY OF STAR FRUIT LEAF EXTRACT AGAINST SKIN AGING

  • Yoshihito Kawashima;Zhou, Yan-Yang;Naoko Kishida;Nobuaki Ohto;Daisuke Araho;Yoko Ito;Toshimitsu Kambara;Zhou, Wan-Hua
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.645-658
    • /
    • 2003
  • We evaluated activities of various plant leaf extracts and found the availability against skin aging in the leaf extract of star fruit (Averrhoa carambola L), and developed Star Fruit Leaf Extract BG30 as an ingredient of cosmetics. Star Fruit Leaf Extract BG30 was found to show scavenging activities of reactive oxygen species and an inhibitory effect on the activity of matrix metalloproteinase-1. It showed increasing activity of type I collagen and recovery effect from damage of UV-B irradiation in human fibroblast. We performed the separation of the active principal from Star Fruit Leaf Extract BG30 to give isofurcatin 2"-Ο-$\alpha$-L-rhamnopyranoside, which showed increasing activity of type I collagen. To examine the anti-wrinkle effect of Star Fruit Leaf Extract BG30, seven volunteers applied a Star Fruit Leaf Extract BG30 1 % cream in double blind manner to one-side of the corner of their eye and the placebo cream to the opposite side. Clinical evaluation of wrinkling was performed every week for 5 weeks using a silicone rubber replica. A statistically significant improvement of Star Fruit Leaf Extract BG30-treated site was seen in decreased wrinkles. Star Fruit Leaf Extract BG30 results in clinically visible improvement in wrinkling when used topically for 5 weeks.

  • PDF

해수의 포말분리시 공기분산기 기공크기 영향 (Effect of Air Distributor Pore Size in Foam Separator of Sea Water)

  • 서근학;김병진;이정훈;임준혁;이경범;김용하;조재윤
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.254-262
    • /
    • 2003
  • Effect of the air distributor pore size for the removal of aquacultural waste, such as protein, total suspended solids (TSS), chemical oxygen demand (COD), turbidity and total ammonia nitrogen (TAN) from sea water was investigated by using foam separator. With the increase of pore size of air distributor, removal rates and efficiency of protein decreased. Removal rate by commercial air stone was in the range between the removal rates by G2 and G4 sintered glass discs. Within the range of pore size distributor from Gl to G4, the removal efficiency of protein were ranged from 21 to $42\%.$ The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was removed by stripping. The pore size of air distributor for a higher overall oxygen mass transfer coefficient and saturation efficiency provided the condition for higher protein removal rate. Also the foam separator could be used as an aerator.

고온 수증기 전해용 $La_{x}Sr_{1-x}GaO_{3}$ 전극 재료의 합성 연구 (A Study on Synthesis of $La_{x}Sr_{1-x}GaO_{3}$ Electrode Material for High Temperature Steam Electrolysis)

  • 박미선;류시옥;우상국;박영태;최호상
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.432-438
    • /
    • 2009
  • In this paper, we synthesized LSG powder by Modified-GNP method. Lanthanum, strontium and gallium (LSG) were selected in the preparation of an oxygen-electrode (anode) for High Temperature Steam Electrolysis system (HTSE). The used amount and concentration of nitric acid were varied to find out an appropriate composition for oxygen-electrode (anode). In order to optimize the molar ratio of La and Sr, ratio of La to Sr was varied that 2:8, 5:5 and 8:2. The combined LSGs were calcined for 2 hours at $700^{\circ}C$ and were sintered in a furnace for 4 hours at $1200^{\circ}C$. The phase and crystallinity of LSG powder were determined by XRD. The surface morphology was observed through SEM photograph, and the specific surface area was investigated with BET. The thermochemical property was determined by TG/DTA. The synthesized preparation was obtained of $La_{0.8}Sr_{0.2}GaO_{3}$ formula for 3M nitric acid, which was the best perovskite phase.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.