• Title/Summary/Keyword: Oxygen Reduction Reaction

Search Result 344, Processing Time 0.027 seconds

Support Effects of Containing Catalysts on Methanol Dehydrogenation

  • Jung, Kwang-Deog;Joo, Oh-Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1135-1138
    • /
    • 2002
  • CuO/ZnO, CuO/SiO,sub>2, and CuO/ZrO2 catalysts were prepared for investigating the support effects on methanol dehydrogenation. It was found that the conversion of methanol was proportional to the copper surface area on Cu/ZnO cat alysts and was independent on that on Cu/ZrO2 and Cu/SiO2. The highest copper surface area was obtained with the Cu/ZrO2 (9/1). The unusual deactivation of the Cu/ZnO, which showed the highest selectivity among the catalysts tested, was observed. Pulse reaction with methanol indicated that the lattice oxygen in ZnO could be removed by forming CO2 in the catalytic reaction, supporting that the ZnO reduction was responsible for the severe deactivation of the Cu/ZnO.

A Study of Hydrocarbon Reduction with Photocatalysts (광촉매를 이용한 탄화수소 저감 연구)

  • 손건석;고성혁;김대중;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.47-53
    • /
    • 2000
  • To overcome the shortage of conventional TWC that is activated at high temperature, higher than 25$0^{\circ}C$, photocatalyst is considered as an new technology. Because the photocatalytic reaction of photocatalyst is not a thermo mechanical reaction, it is necessary to heat the system to start the reaction. It can be activated just by ultra violet light that includes wavelengths shorter than 400 nanometers even at ambient temperature. In this study photocatalytic reduction of hydrocarbon was investigated with a model gas test. To understand the effects of co-existence gases on the hydrocarbon reduction by photoreaction, CO and NO, $O_2, H_2O$ gases those are components of exhaust gases of gasoline engine are supplied with C3H8/N2 to a photoreactor. The photoreactor contains $TiO_2$ photocatalyst powders and a UV bulb. The results show that oxygen is the most important factor to reduce HC emission with photocatalyst. Photocatalyst seems to have a good probability for automotive application to reduce cold start HC emissions.

  • PDF

Microstructural Evoluation from the Oxidation-Reduction of Mn-Zn Ferrite Single Crystal (망간징크 페라이트 단결정의 산화-환원반응에 따른 미세구조의 변화)

  • 윤상영;김문규
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.652-660
    • /
    • 1990
  • Oxidation of Mn-Zn ferrite was made in air at various temperatures ranging from 400$^{\circ}C$ to 1150$^{\circ}C$. Subsequent reduction fo these oxidized samples was also made in air at 1300-1350$^{\circ}C$ where the spinel phase of Mn-Zn ferrite is stable. Morphological observation revealed that the shape of precipitated hematite was plate or lath type on the close-packed habit plane of {111} ferrite which has a definite orientation relationship. The growth of precipitates showed the behavior fo parabolic dependence of the oxidating time. An apparent activation energy for the growth was found to be 125${\pm}$3Kcal/mol. The fact that pores are observed along the precipitates illustrates the oxidation to occur dominantly by the counterdiffusion of cations and ction vacancies. For the reductio reaction pores are found to form at the site once occupied by the precipitates and at the surface. This observation illustrates that the oxygen volitalization from interior region to the surface is the dominant process for the reduction reaction.

  • PDF

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

The Manganese Oxide which has Modified Electrochemically Affects in Oxygen Reduction Reaction (전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 영향)

  • Park, Sung-Ho;Shin, Hyun-Soo;Kim, Jeong-Sik;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • This study is concerned the electrocatalytic generation of oxygen gas at electrochemically deposited manganese oxide electrode in KOH solution. Manganese oxide nanoparticles electrodeposited onto relatively substrate, e.g glassy carbon, Au, Ti electrode. MnOx is electrodeposited in nanorod structure which cover the overall surface of the substrate. The $\gamma$-MnOOH that is kind of manganese oxide species plays a significant role as a catalytic mediator, which promote 4-electron reduction process. Modified electrodes with electrodeposited manganese oxide structures resulted in significant decrease in the anodic polarization compared with the unmodified electrodes in alkaline media.

Catalytic Reduction of Nitric Oxide in Oxygen-Rich Exhaust with Methanol over $La_2O_3$ Catalysts (메탄올을 환원제로 사용하는 과잉산소 분위기에서 $La_2O_3$ 촉매를 이용한 NO의 환원에 관한 연구)

  • Kim, Sang-Hwan;Yoo, Hyun-Ju;Park, Jung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • Nitric oxide(NO) reduction by methanol was investigated over $La_2O_3$ catalysts in the presence and absence of oxygen. In the absence of $O_2$, $CH_3OH$ reduced NO to both $N_2$ and $N_2O$, with selectivity to $N_2$ formation decreasing from 81-88% at 623K to 47-71% at 723 K. With 1.2% $O_2$ in the feed, the rates were 4-8 times higher, but the selectivity to $N_2$ dropped from 50% at 623 K to 9% at 723 K. The specific activities with $La_2O_3$ for this reaction were higher than those for other reductants; for example, at 773 K with hydrogen a specific activity of $34\;{\mu}mol\;NO/sec{\cdot}m^2$ was obtained whereas that for methanol was $638\;{\mu}mol\;NO/sec{\cdot}m^2$. The Arrhenius plots were linear under differential reaction conditions, and the apparant activation energy was consistantly near 15 kcal/mol with $CH_3OH$. Linear partial pressure dependencies based on a power rate law were obtained and showed a near-zero order in $CH_3OH$ and a near-first order in $H_2$.

Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions (다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매)

  • Jang, Jeonghee;Sharma, Monika;Sung, Hukwang;Kim, Sunpyo;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

Electrochemical Properties of Oxygen Adducts Pentadentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (비수용매에서 다섯 자리 Schiff Base Cobalt (Ⅱ) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질)

  • Choe, Ju Hyeong;Jeong, Jin Sun;Choe, Yong Guk;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.51-62
    • /
    • 1990
  • Pentadentate Schiff base cobalt(II) complexes; Co(II)(Sal-DET) and Co(II)(Sal-DPT) were synthesized and these complexes were allowed to react with dry to form oxygen adducts of cobalt(II) complexes such as [Co(III)(Sal-DET)]$_2O_2$ and [Co(III)(DPT)]$_2O_2$ in aprotic solvents. These complexes have been identified by IR spectra, TGA, DSC, magnetic susceptibility measurements, and elemental analysis. It has been found that the oxygen adadduct complexes of $\mu$-peroxo type have hexaccordinated octahedral configuration with pentadentate schiff base cobalt(II) and oxygen, but the mole ratio of oxygen to cobalt(III) complexes of first step for oxygen adduct formation reaction of cobalt(II) complexes in aprotic solvents are 1:1. The redox reaction processes of Co(II)(Sal-DET), Co(II)(Sal-DPT), and oxygen adduct of cobalt(II) complexes were investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine. As a result the reduction reaction processes of Co(III)/Co(II) and Co(II)/Co(I) for cobalt(II) complexes and oxygen adducts of cobalt(II) complexes are two irreversible steps of one eletron process, and reaction processes of oxygen for oxygen adducts complexes were quasireversible and redox range of potential was $E_{pc}$ = -0.97V∼-0.86V and $E_{pa}$ = -0.87V ∼ 0.64V.

  • PDF

Influence of Oxygen Rate on Driver Fatigue During Simulated Driving (차량 시뮬레이터에서 산소농도에 따른 운전 피로감의 평가)

  • 성은정;민병찬;전효정;김승철;김철중
    • Science of Emotion and Sensibility
    • /
    • v.5 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • Driving involves a series of complicated precesses requiring various human capacities, such as perception, will decision, and athletic functions. Consequently, it induces a high degree of continuous concentration of mind and tension from external stimulation, bringing fatigue to the driver, and driver fatigue is counted as one of the major causes of traffic accidents. Nevertheless, because of the complicated urban lives, traffic congestion, job characteristics, and so on, the drivers have to spend a longer time inside a vehicle, and the fatigue and stress thereof is almost unavoidable. We haute, therefore, turned our attention to the reduction in the fatigue during driving by supplying oxygen, and investigated in this research the drivers subjective fatigue evaluations and reaction time when oxygen is supplied in different rates. As a result, we have found that the subjective fatigue feeling is highest at low-rate O/Sub 2/ supply (18%), and fatigue feeling was comparatively reduced at high-rate O/Sub 2/ (30%). The sleepiness also showed the tendency to be reduced at high-rate O/Sub 2/ supply in the case of driving for 1 hour or more. The time for reaction to braking after the sign for urgent stop is given tends to show more substantial reduction at high-rate O/Sub 2/ supply than at low-rate O/Sub 2/ supply after 2 hours driving. It can, therefore, be deduced from the aforesaid results that the subjective responses and behavioral reactions tend to show reduced fatigue at the condition of high-rate O/Sub 2/ supply. Hence, it was suggested that drivers felt subjective fatigue while driving at low-rate O/Sub 2/ and the subjective fatigue and reaction time were reduced at high-rate O/Sub 2/. These findings suggest that the oxygen supply will reduce driver fatigue.

  • PDF