• Title/Summary/Keyword: Oxygen Octahedra

Search Result 20, Processing Time 0.025 seconds

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.187-202
    • /
    • 2017
  • The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

Structural Distortions and Electrical Properties of Magnetoelectric Layered Perovskites: $Bi_4Ti_3O_{}12.nBiFeO_3$(n=1&2)

  • Ko, Taegyung;Bang, Gyusuk;Shin, Jungmuk
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 1998
  • The structure refinements and the electrical and magnetoelectric measurements were performed for BIT.1BF and BIT.2BT. The tetragonal distortion of the ab plane became lessened with the addition of $4BiFeO_3 into Bi_4Ti_3O_{12}$ significantly. However, the tilting of the outer-oxygen octahedra of the perovskite unit and the elongatin of the $(Bi_2O_2)^{2+}$ layers became more pronounced. For the both phases, the bariations of dielectric properties and electrical conductivities at high temperatures showed that the ferroelectic I-rerroelectric II phase transition existed before reaching the Curie temperature. The electrical conductivity became higher with the increase of $Fe^{3+}$ ions, implying that the electron transfer increased correspondingly. The magnetoelectric effect was observed linear up to ~8 kOe, which was stronger in BIT.1BF than BIT.2BF. This behavior indicates that the distortion of the ab plane may affect the induced polarization as well as magnetic moment.

  • PDF

Dielectric Properties of Ceramic/Polymer Composites at Microwave Frequencies

  • Kim, Eung-Su;Jeon, Chang-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • Effects of particle size, crystal structures and multilayer structures of $ATiO_3$, $ATa_2O_6$, $ANb_2O_6$, $AWO_4$, and $AMoO_4$ (A=Ni, Mg, Zn, Co) ceramic fillers on the dielectric properties of polystyrene (PS), polypropylene (PP) and polytetrafluoroethylene (PTFE) polymer matrices were investigated at microwave frequencies. The microwave dielectric properties of $ATiO_3$ (ilmenite), $ATa_2O_6$ (tri-rutile), $ANb_2O_6$ (columbite), AWO4 (wolframite), and AMoO4 (wolframite) ceramics were largely dependent on the structural characteristics of oxygen octahedra. The dielectric constant (K) of the composites was increased with the ceramic content. However, the dielectric loss (tan ${\delta}$) of the composites was affected by the type of ceramics and the crystallinity of polymers. For the composites with same amount of ceramics, the K was decreased and the tan ${\delta}$ was increased with the particle size of ceramics. Also, the dielectric properties of the composites were dependent on the multilayer structures with different arrangements. Several theoretical models have been employed to predict the effective dielectric properties of the composites. The frequency dependence of dielectric properties and the temperature coefficient of resonant frequency (TCF) of the composites were also discussed.

  • PDF

A Combined Rietveld Refinement on the Crystal Structure of a Magnetoelectric Aurivillius Phase $Bi_5Ti_3FeO_{15}$ Using Neutron and X-ray Powder Diffractions

  • Ko, Tae-Gyung;Jun, Chang-Ho;Lee, Jeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.341-347
    • /
    • 1999
  • An ambiguity on the correct room temperature structure of $Bi_5Ti_3FeO_{15}$ was resolved using a combined Rietveld refinement of neutron and X-ray diffraction. The structure of this compound has been reported to have a space group of F2mm (adopting 2-fold rotation symmetry along the c-axis) or A21am. However, our diffraction, study reveals that some reflections would violate F-centering and confirm that the belong to $A2_1$am. Out refinement with the space group of $A2_1$am converged at $R_p=6.85%, R_wp=9.23%$ and $\chi^2$=1.66 for an isotropic temperature model with 85 variables. The lattice constants are a=5.4677(1) $\AA$, b=5.4396(1) $\AA$, and c=41.2475(8)$\AA$. In structure, Ti/Fe atoms at the oxygen octahedral sites of the perovskite unit are completely disordered, resulting in that these atoms are transparent in neutron diffraction. The octahedra of the perovskite unit are relatively displaced along the a-axis against the Bi atoms, which contribute as a major component to the spontaneous polarization of $Bi_5Ti_3FeO_{15}$.

  • PDF

Local Electronic Structures of $SiO_2$ Polymorph Crystals: Insights from O K-edge Energy-Loss Near-Edge Spectroscopy (산소 K-전자껍질 에너지-손실 흡수끝-부근 구조 양자계산을 이용한 $SiO_2$ 동질이상 광물의 전자구조 연구)

  • Yi, Yoo-Soo;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.403-411
    • /
    • 2010
  • Essentials of understanding the geochemical evolution and geophysical processes in Earth's system are macroscopic properties and atomistic (and electronic) structures of Earth materials. Recent advances in quantum calculations based on the density functional theory allow us to unveil the previously unknown details of local atomic structures in diverse silicates in Earth's interior. Here, we report the O K-edge ELNES (energy-loss near-edge structure; ELNES) spectra and PLDOS (partial local density of states) for oxygen atoms in ${\alpha}$-quartz and stishovite using the quantum calculations based on FP-LAPW (full potential linearized augmented plane wave). The calculated O K-edge ELNES spectrum of ${\alpha}$-quartz shows a strong peak at ~538 eV due to comer-sharing oxygen linking two $SiO_4$ tetrahedra and that for stishovite shows two distinct peaks at ~537 and ~543 eV corresponding to edge-sharing oxygen linking $SiO_6$ octahedra. The significant differences in spectral features of O K-edge ELNES spectra suggest that the O K-edge features can be useful indicator to distinguish various oxygen sites in diverse crystal and amorphous silicates in the Earth's interior.

Nonstoichiometry and Magnetic Properties of the $Eu_{1-x}Sr_xCoO_{3-y}$ System ($Eu_{1-x}Sr_xCoO_{3-y}$계의 비화학량론과 자기적 특성)

  • Ryu, Kwang Hyun;Min, Ji Young;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.508-512
    • /
    • 1995
  • A series of samples in the $Eu_{1-x}Sr_xCoO_{3-y}$ system has been prepared by heating the proper amount of reactant mixture to 1150$^{\circ}C$ under an ambient atmosphere, and the solid solutions are identified by X-ray powder diffraction analysis. The crystal system of samples for the compositions of x=0.00 and 0.25 are found to be orthorhombic whose local symmetry is similiar to the distorted octahedra with orthoferrite type one, whereas those of x=0.50 and 0.75 to be the cubic system, and that of x=1.00 to the orthorhombic similiar to be the brownmillerite type. The amount of $Co^{4+}$ ion (${\tau}$ value) is maximized at the composition of x=0.50, and the oxygen vacancies increase with the x value. The nonstoichiometric chemical formula of each compound could be determined from the mole ratio of $Co^{4+}$ ion and oxygen vacancies. The $Co^{3+}$ ion located in octahedral site has spin transition from low spin to high spin states with increasing temperature. Therefore, the effective magnetic moment of each samples obtained from the magnetic measurement is increased with the increasing temperature. The $EuCoO_{3.00}$ has strong antiferromagnetic interaction between the neighboring $Co^{3+}$ ions through the intermediate oxygen ions. With the increasing ${\tau}$ value, the absolute {\theta}_p$ value is decreased by the ferromagnetic interaction of $Co^{3+}-O^2-Co^{4+}$ and thus the {\theta}_p$ has positive value at x=0.50.

  • PDF

Effects of Sulfur Substitution on Chemical Bonding Nature and Electrochemical Performance of Layered LiMn0.9Cr0.1O2-xSx

  • Lim, Seung-Tae;Park, Dae-Hoon;Lee, Sun-Hee;Hwang, Seong-Ju;Yoon, Young-Soo;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1310-1314
    • /
    • 2006
  • Sulfur-substituted $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$ $(0\;\leq\;x\;\leq\;0.1)$ layered oxides have been prepared by solid state reaction under inert atmosphere. From powder X-ray diffraction analyses, all the present lithium manganates were found to be crystallized with monoclinic-layered structure. Electrochemical measurements clearly demonstrated that, in comparison with the pristine $LiMn_{0.9}Cr_{0.1}O_2$, the sulfur-substituted derivatives exhibit smaller discharge capacities for the entire cycle range but the recovery of discharge capacity after the initial several cycles becomes faster upon sulfur substitution. The effect of the sulfur substitution on the chemical bonding nature of $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$has been investigated using X-ray absorption spectroscopic (XAS) analyses at Mn and Cr K-edges. According to Mn K-edge XAS results, the trivalent oxidation state of manganese ion remains unchanged before and after the substitution whereas the local structure around manganese ions becomes more distorted with increasing the substitution rate of sulfur. On the other hand, the replacement of oxygen with sulfur has negligible influence on the local atomic arrangement around chromium ions, which is surely due to the high octahedral stabilization energy of $Cr^{+III} $ ions. Based on the present experimental findings, we have suggested that the decrease of discharge capacity upon sulfur substitution is ascribable to the enhanced structural distortion of $MnO_6$ octahedra and/or to the formation of covalent Li-S bonds, and the accompanying improvement of cyclability would be related to the depression of Mn migration and/or to the pillaring effect of larger sulfur anion.

Crystal Structure and Physical Property of Tetragonal-like Epitaxial Bismuth Ferrites Film

  • Nam, Joong-Hee;Biegalski, Michael;Christen, Hans M.;Kim, Byung-Ik
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.7-8
    • /
    • 2011
  • Basically, the lattice mismatch between film and substrate can make those BiFeO3(BFO) films distorted with strain structure. BFO phase can be stabilized on LaAlO3(LAO) represents the example of a multiferroic with giant axial ratio. Its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion and related to the rotation of the oxygen octahedra. In this study, we show that phases with a tetragonal-like epitaxial BFO films can indeed be ferroelectric and also can be stabilized via epitaxial growth onto LAO. Recent reports on epitaxial BFO films show that the crystal structure changes from nearly rhombohedral ("R-like") to nearly tetragonal("T-like") at strains exceeding approximately -4.5%, with the "T-like" structure being characterized by a highly enhanced c/a ratio. While both the "R-like" and the "T-like" phases are monoclinic, our detailed x-ray diffraction results reveal asymmetry change from MA and MC type, respectively. By applying additional strain or by modifying the unit cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the "T-like" MC phase is reduced, i.e. the system approaches a true tetragonal symmetry. There are two different M-H loops for $Bi_{1-x}Ba_xFeO_{3-{\delta}}$(BBFO) and BFO films on SrTiO3(STO) & LAO substrates. Along with the ferroelectric characterization, these magnetic data indicate that the BFO phase stabilized on LAO represents the first example of a multiferroic with giant axial ratio. However, there is a significant difference between this phase and other predicted ferroelectrics with a giant axial ratio: its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion. Therefore, in going from bulk to highly-strained films, a phase sequence of rhombohedral(R)-to-monoclinic ["R-like" MA-to-monoclinic, "T-like" MC-to-tetragonal (T)] is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e. near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. Those major results are summarized as follows ; 1) Ba-doping increases the unit cell volume, 2) BBFO on LAO can be fully strained up to x=0.08 as a strain limit (Fig. 1), 3) P(E) & M(H) properties can be tuned by the variation of composition, strain, and film thickness.

  • PDF

Crystal Structure of Hexapotassium Undecahydrogen Tetratungsto Hexaantimonate(Ⅴ) Tetrahydrate (Hexapotassium Undecahydrogen Tetratungsto Hexaantimonate(Ⅴ) Tetraphydrate의 결정 구조)

  • Park, Gi Min;Yoshiki Ozawa;Lee, Uk;Lee, Uk
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.359-365
    • /
    • 1994
  • The crystal stucture of hexapotassium undecahydrogen tetratungsto hexaantimonate(V) tetrahydrate has been determined from single crystal X-ray diffraction data. Crystal data are as follows: $K_6H_{12}[Sb_6W_4O_{36}]{\cdot}4H_2O$, Fw = 2360.62, tetragonal, I$4_1$/a, a = 10.799(1) ${\AA}$, c = 35.244(5) ${\AA}$, V = 4110.1(7) ${\AA}^3$, Z = 4, $D_x$ = 3.82 g$cm^{-3}$, $\mu(MoK\alpha)$ = 160.15 $cm^{-1}$, T = 293 K, final R = 0.0356 for 2400($F_0 > 3\sigma(F_0))$ independent reflections. The $[H_{12}Sb_6W_4O_{36}]^{-6}$ polyanion independently consists of one tungsten, two antimony, and nine oxygen atoms and belongs to the $\bar4(S_4)$ point group. This polyanion is formed by two open octahedra five membered ring of Sb(3)$O_6-W(1)O_6-Sb(2)O_6-W(1)O_6-Sb(3)O_6$ which is connected at right angle. The Sb-W, Sb-O, and W-O bond distances range from 3.2304(9) to 3.2403(5) $\AA$, 1.745(8) to 2.334(6) $\AA$, and 1.914(7) to 2.039(7) $\AA$, respectively.

  • PDF

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes (Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과)

  • Choi, Byung-Hyun;Jun, Hyung Tak;Yi, Eun Jeong;Hwang, Haejin
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.52-64
    • /
    • 2021
  • The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.