Local Electronic Structures of $SiO_2$ Polymorph Crystals: Insights from O K-edge Energy-Loss Near-Edge Spectroscopy

산소 K-전자껍질 에너지-손실 흡수끝-부근 구조 양자계산을 이용한 $SiO_2$ 동질이상 광물의 전자구조 연구

  • Yi, Yoo-Soo (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
  • 이유수 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2010.12.10
  • Accepted : 2010.12.21
  • Published : 2010.12.30

Abstract

Essentials of understanding the geochemical evolution and geophysical processes in Earth's system are macroscopic properties and atomistic (and electronic) structures of Earth materials. Recent advances in quantum calculations based on the density functional theory allow us to unveil the previously unknown details of local atomic structures in diverse silicates in Earth's interior. Here, we report the O K-edge ELNES (energy-loss near-edge structure; ELNES) spectra and PLDOS (partial local density of states) for oxygen atoms in ${\alpha}$-quartz and stishovite using the quantum calculations based on FP-LAPW (full potential linearized augmented plane wave). The calculated O K-edge ELNES spectrum of ${\alpha}$-quartz shows a strong peak at ~538 eV due to comer-sharing oxygen linking two $SiO_4$ tetrahedra and that for stishovite shows two distinct peaks at ~537 and ~543 eV corresponding to edge-sharing oxygen linking $SiO_6$ octahedra. The significant differences in spectral features of O K-edge ELNES spectra suggest that the O K-edge features can be useful indicator to distinguish various oxygen sites in diverse crystal and amorphous silicates in the Earth's interior.

지구물질의 거시적 성질로부터 지구시스템 진화의 실마리를 찾을 수 있으며, 이런 거시적인 물성은 지구물질의 원자구조에 의하여 결정되기 때문에 지구물질의 원자구조(즉, 전자구조)를 파악하는 것은 지구시스템의 현상의 이해에 매우 중요하다. 지구내부의 잘 알려지지 않은 물질들의 원자구조를 규명하기 위하여 최근에는 범밀도함수 이론에 기반한 양자계산이 이용되고 있다. 본 연구에서는 온-포텐셜 선형화 보충 평면파가 이용된 양자계산을 통해 저온석영과 스티쇼바이트에 대한 산소원자 K-전자껍질 에너지-손실 흡수끝-부근 구조(energy-loss near-edge structure; ELNES) 스펙트럼과 각 전자 오비탈에 대한 국소상태밀도(partial local density of states; PLDOS)를 계산하였다. 산소원자 K-전자껍질 ELNES 스펙트럼은 저온석영과 스티쇼바이트의 결정구조에 따라서, 저온석영에서는 ~538 eV에서 세기가 강한 피크가 나타나고 스티쇼바이트에서는 ~537과 ~543 eV에 강한 피크가 나타난다. 이와 같은 결정구조에 따른 산소원자 K-전자껍질 ELNES 스펙트럼의 차이는 지구내부 다양한 결정질과 비결정질 규산염 물질의 산소원자 주변의 환경을 파악하는 중요한 지표로 이용될 수 있다.

Keywords

References

  1. Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics. Brooks Cole, New York, 848p.
  2. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J. (2010) User Guide for Wien2k 10.1. Inst. of Phys. and Theo. Chem. at Vienna Univ. of Tech., Vienna, 202p.
  3. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J. (2010) Wien2k V10.1 (An Augmented PlaneWave + Local Orbitals Program for Calculating Crystal Properties). Inst. of Phys. and Theo. Chem. at Vienna Univ. of Tech., from http://www.wien2k.at
  4. Cabaret, D., Sainctavit, P., Ildefonse, P., and Flank, A.M. (1998) Full multiple scattering calculations of the X-ray absorption near edge structure at the magnesium K-edge in pyroxene. Am. Miner., 83, 300-304. https://doi.org/10.2138/am-1998-3-413
  5. Carter, E.A. (2008) Challenges in modeling materials properties without experimental input. Science, 321, 800-803. https://doi.org/10.1126/science.1158009
  6. Cottenier, S. (2002) Density Functional Theory and the family of (L)APW-methods: a step-by-step in-troduction. from http://www.wien2k.at/reg_user/textbooks
  7. de Groot, F. (2001) High resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev., 101, 1779-1808. https://doi.org/10.1021/cr9900681
  8. Fukui, H., Kanzaki, M., Hiraoka, N., and Cai, Y.Q. (2009) X-ray Raman scattering for structural investigation of silica/silicate minerals. Phys. Chem. Miner., 36, 171-181. https://doi.org/10.1007/s00269-008-0267-x
  9. Glinnrmann, E., King, H., Schulz, T., Hahn, J., La Palaca, S., and Dacol, F. (1992) Crystal structures of the low-temperature quartz-type phases of $SiO_{2}$ and $GeO_{2}$ at elevated pressurse. Zeitschrift fur Kristallographie, 198, 177-212. https://doi.org/10.1524/zkri.1992.198.3-4.177
  10. Griffiths, D.J. (2005) Introduction to Quantum Mechanics. Prentice Hall, New Jersey, 480p.
  11. Hebert, C. (2007) Practical aspects of running the WIEN2k code for electron spectroscopy. Micron, 38, 12-28. https://doi.org/10.1016/j.micron.2006.03.010
  12. Hebert, C., Luitz, J., and Schattschneider, P. (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron, 34, 219-225. https://doi.org/10.1016/S0968-4328(03)00030-1
  13. Iitaka, T., Hirose, K., Kawamura, K., and Murakami, M. (2004) The elasticity of the $MgSiO_{3}$ post-perovskite phase in the Earth's lowermost mantle. Nature, 430, 442-445. https://doi.org/10.1038/nature02702
  14. Ikeno, H., Tanaka, I., Miyamae, L., Mishima, T., Adachi, H., and Ogasawara, K. (2004) First principles calculation of Fe $L_{2,3}$-edge X-ray absorption near edge structures of iron oxides. Mater. Trans., 45, 1414-1418. https://doi.org/10.2320/matertrans.45.1414
  15. Kittel, C. (2004) Introduction to Solid State Physics. Wiley, New York, 704p.
  16. Kurata, H., Hojou, K., and Uozumi, T. (1998) Cluster model calculations for the Fe $L_{2,3}$-edge fine structure of alpha$Fe_{2}O_{3}$. J. Electron Microsc., 47, 293-299. https://doi.org/10.1093/oxfordjournals.jmicro.a023595
  17. Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J.F., Li, B.S., Fukui, H., Lee, B.H., Kim, H.N., and Yoo, C.S. (2008) X-ray Raman scattering study of $MgSiO_{3}$ glass at high pressure: Implication for triclustered $MgSiO_{3}$ melt in Earth's mantle. Proc. Natl. Acad. Sci. U.S.A., 105, 7925-7929. https://doi.org/10.1073/pnas.0802667105
  18. Levine, I.N. (2006) Quantum Chemistry. Prentice Hall, New Jersey, 739p.
  19. Lin, J.F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y.Q., Hiraoka, N., Yoo, C.S., Trave, A., Eng, P., Hu, M.Y., and Chow, P. (2007) Electronic bonding transition in compressed $SiO_{2}$ glass. Phys. Rev. B, 75.
  20. Luitz, J., Maier, M., Hebert, C., Schattschneider, P., Blaha, P., Schwarz, K., and Jouffrey, B. (2001) Partial core hole screening in the Cu $L_{3}-edge$. Eur. Phys. J. B, 21, 363-367. https://doi.org/10.1007/s100510170179
  21. Mao, W.L., Mao, H.K., Sturhahn, W., Zhao, J.Y., Prakapenka, V.B., Meng, Y., Shu, J.F., Fei, Y.W., and Hemley, R.J. (2006) Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science, 312, 564-565. https://doi.org/10.1126/science.1123442
  22. Marx, D. and Hutter, J. (2000) Ab initio Molecular Dynamics: Theory and Implementation. Mod. Methods and Algorithms of Quantum Chem., 1, 301-449.
  23. McHale, J.L. (1999) Molecular Spectrscopy. Prentice Hall, New Jersey, 463p.
  24. Mo, S.-D. and Ching, W.Y. (2000) Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure. Phys. Rev. B, 62, 7901. https://doi.org/10.1103/PhysRevB.62.7901
  25. Mo, S.-D. and Ching, W.Y. (2001) X-ray absorption near-edge structure in alpha-quartz and stishovite: Ab initio calculation with core--hole interaction. Appl. Phys. Lett., 78, 3809-3811. https://doi.org/10.1063/1.1378311
  26. Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y. (2004) Post-perovskite phase transition in $MgSiO_{3}$. Science, 304, 855-858. https://doi.org/10.1126/science.1095932
  27. Neuville, D.R., de Ligny, D., Cormier, L., Henderson, G.S., Roux, J., Flank, A.M., and Lagarde, P. (2009) The crystal and melt structure of spinel and alumina at high temperature: An in-situ XANES study at the Al and Mg K-edge. Geochim. Cosmochim. Acta., 73, 3410-3422. https://doi.org/10.1016/j.gca.2009.02.033
  28. Oganov, A.R., Martonak, R., Laio, A., Raiteri, P., and Parrinello, M. (2005) Anisotropy of Earth's D'' layer and stacking faults in the $MgSiO_{3}$ post-perovskite phase. Nature, 438, 1142-1144. https://doi.org/10.1038/nature04439
  29. Oganov, A.R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of $MgSiO_{3}$ in Earth's D'' layer. Nature, 430, 445-448. https://doi.org/10.1038/nature02701
  30. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045. https://doi.org/10.1103/RevModPhys.64.1045
  31. Ross, N.L., Shu, J.F., Hazen, R.M., and Gasparik, T. (1990) High-pressure crystal-chemistry of stishovite. Am. Miner., 75, 739-747.
  32. Rueff, J.-P. and Shukla, A. (2010) Inelastic x-ray scattering by electronic excitations under high pressure. Rev. Mod. Phys., 82, 847. https://doi.org/10.1103/RevModPhys.82.847
  33. Schwarz, K. (2003) DFT calculations of solids with LAPW and WIEN2k. J. Solid State Chem., 176, 319-328. https://doi.org/10.1016/S0022-4596(03)00213-5
  34. Schwarz, K. and Blaha, P. (2003) Solid state calculations using WIEN2k. Comput. Mater. Sci., 28, 259-273. https://doi.org/10.1016/S0927-0256(03)00112-5
  35. Schwarz, K., Blaha, P., and Madsen, G.K.H. (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun., 147, 71-76. https://doi.org/10.1016/S0010-4655(02)00206-0
  36. Shim, S.H. (2008) The postperovskite transition. Annu.Rev. Earth Planet. Sci., 36, 569-599. https://doi.org/10.1146/annurev.earth.36.031207.124309
  37. Singh, D.J. and Nordstrom, L. (2006) Planewaves, pseudopotentials, and the LAPW method. Springer, New York, 134p.
  38. Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_{3}$ liquid in Earth's lower mantle. Science, 310, 297-299. https://doi.org/10.1126/science.1116952
  39. Tamura, E., van Ek, J., Froba, M., and Wong, J. (1995) X-ray absorption near edge structure in metals: Relativistic Effects and Core-Hole Screening. Phys.Rev. Lett., 74, 4899. https://doi.org/10.1103/PhysRevLett.74.4899
  40. Tse, J.S. (2002) Ab initio molecular dynamics with density functional theory. Annu. Rev. Phys. Chem., 53, 249-290. https://doi.org/10.1146/annurev.physchem.53.090401.105737