• Title/Summary/Keyword: Oxygen Evolution Reaction

Search Result 120, Processing Time 0.03 seconds

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.

Fabrication of Ceramic Oxides for Neutron Irradiation (중성자조사를 위한 세라믹 합성)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.201-202
    • /
    • 2008
  • Formation of pores in melt processed ceramics oxides and its effect on the microstructure were studied. Spherical Pores with a size of a few tens of microns were formed due to the evolution of oxygen gas during melting of a oxide. The liquid pockets were converted into sperical oxide regions with a lower oxide density through the peritectic reaction during subsequent fabrication.

  • PDF

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials (배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발)

  • Kim, Hyunah;Kang, Kisuk
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.416-426
    • /
    • 2018
  • Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.

Synthesis of Co3O4 Nanocubes as an Efficient Electrocatalysts for the Oxygen Evolution Reacitons (물 분해 과정에서 효율적인 촉매 특성을 보이는 Co3O4 nanocubes 합성)

  • Choi, Hyung Wook;Jeong, Dong In;Wu, Shengyuan;Kumar, Mohit;Kang, Bong Kyun;Yang, Woo Seok;Yoon, Dae Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • The high efficient water splitting system should involve the reduction of high overpotential value, which was enhanced by the electrocatalytic reaction efficiency of catalysts, during the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) reaction, respectively. Among them, transition metal-based compounds (oxides, sulfides, phosphides, and nitrides) are attracting attention as catalyst materials to replace noble metals that are currently commercially available. Herein, we synthesized optimal monodisperse Co3[Co(CN)6]2 PBAs by FESEM, and confirmed crystallinity by XRD and FT-IR, and thermal behavior of PBAs via TG-DTA. Also, we synthesized monodispersed Co3O4 nanocubes by calcination of Co3[Co(CN)6]2 PBAs, confirmed the crystallinity by XRD, and proceeded OER measurement. Finally, the synthesized Co3O4 nanocubes showed a low overpotential of 312 mV at a current density of 10 mA·cm-2 with a low Tafel plot (96.6 mV·dec-1).

Study on the Coating Electrode for the Alkaline Water Electrolysis (알칼리 수전해용 코팅 전극에 관한 연구)

  • MIN-JI KANG;CHEOL-HWI RYU;GAB-JIN HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.575-580
    • /
    • 2023
  • An electrode was prepared by dip-coating NiFe2O4 powder on stainless steel (SUS) support for the application in the alkaline water electrolysis. The prepared electrode was analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), and was evaluated for the voltage properties with the change of current density in oxygen evolution reaction (OER) and hydrgen evolution reaction (HER) using 1, 3 and 7 M KOH solution. From the SEM and EDXS analysis, it was confirmed that the prepared electrode had NiFe2O4 on the SUS support. In OER and HER, the voltage in the 7 M KOH solution had a value of 1.35 and -1.90 V at 0.2 and -0.2 A/cm2 of the current density, respectively. It was considered that the prepared electrode could be use as an electrode in the alkaline water electrolysis from the experimental results.

Microstructure Evolution in Sintered CoO under Electric Fields (CoO 소결체의 전기장에 의한 미세구조 변화)

  • 이기춘;유한일
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.912-918
    • /
    • 1992
  • Microstructure evolution including morphological change in the vicinity of the electrodes, porosity change and grain boundary migration was observed in polycrystalline CoO subject to electric fields at 1100 and 121$0^{\circ}C$ in air. At the cathode, the transported cations react with oxygen in the surrounding to form new lattices, while, at the anode, the reverse reaction occurs leading to lattice annihilation. Lattice formation also takes place at the surface of pores near the cathode inducing pore-filling effect. Grain boundary migration was found bo be enhanced or retarded depending on the field direction. It is therefore implied that the driving force of grain boundary migration is the vectorial sum of the curvature-induced chemical potential gradient and the electric field applied.

  • PDF

Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성)

  • AN, DA-SOL;BAE, KI-KWANG;PARK, CHU-SIK;KIM, CHANG-HEE;KANG, KOUNG-SOO;CHO, WON-CHUL;CHO, HYUN-SEOK;KIM, YOUNG-HO;JEONG, SEONG-UK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

First Principles Study of spin polarization in Fe-doped monolayer C2N-h2D

  • Lee, Sang Yoon;Jeong, Geumbi
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.336-338
    • /
    • 2016
  • Recent multifunctional two-dimensional material research has triggered huge interests in various modifications for substitution of atoms. Instead of novel metals used as the most popular catalysts, nonprecious transition metals are promising candidates for efficient oxidation-reduction transfers. The recent discovery of $Co@C_2N$ has an alternate possiblity as catalysts for the ORR(Oxygen Reduction Reaction) in DSSc(Dye Sensitized Solar Cell) and OER(Oxygen evolution cobalt oxides). Here we report spin-polarized DFT calculations of the structure doped Iron that is one of ferromagnetism atoms like Co to provide a basic desciption of the ferromagnetism of the elemental metals. The spin-density-funtional results present the most stable state energetically is when having pairwise up/down spin.

  • PDF

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis (분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구)

  • Kim, Ingyeom;Nah, In Wook;Park, Sehkyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.854-862
    • /
    • 2016
  • As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.