• Title/Summary/Keyword: Oxygen Control

Search Result 1,967, Processing Time 0.028 seconds

Characteristic of Hydrogen-oxygen Mixed Gas Power Conversion System (혼합수소발생기용 전력변환장치의 특성)

  • Mun, Sang-Pil;Lee, Hae-Su;Nakaoka, Mutsuo;Jeong, Jang-Geun;Kim, Chang-Il;Jo, Gil-Je;Kim, Sang-Don
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.323-326
    • /
    • 2007
  • In this paper, the basic experiment, electrolytic cell design and basic manufacturing have been made to interpret the characteristics of Hydrogen-Oxygen-Gas-Generator. As for the detailed matters, the data research on basic technology on Hydrogen-Oxygen-Gas and analysis on characteristics of Hydrogen-Oxygen-Gas from basic experiment. Also the experiment of characteristics and comparative evaluation between constant current source using SCR converter from existing method and constant current source using new phase shift PWM control method converter. As results when it has injected constant DC current, we has compared Gas quantities by variable ripple frequencies using phase shift PWM control method converter. Therefore, in linear region, it has not different Gas quantities by constant DC current and by phase shift PWM control method converter. Also, it has increased Gas quantities wilder linear region when put ripple frequency at saturation region. Through, Gas quantities and input rower, it has acquired higher input power per Gas quantities at put pulse current. Therefore, when designing converter or inverter for electrolysis, which has ripple current.

  • PDF

Mechanism of Lung Damage Induced by Cyclohexane in Rats (Cyclohexane에 의한 랫드의 폐손상 기전)

  • 전태원;윤종국
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.159-165
    • /
    • 2002
  • Recently, we reported (korean J. Biomed. Lab. Sci., 6(4): 245-251, 2000) that cyclohexane (l.56 g/kg of body wt., i.p.) administration led to lung injury in rats. However the detailed mechanism remain to be elucidated. This study was designed to clarify the mechanism of lung damage induced by cyclohexane in rats. First, lung damage was assessed by quantifying bronchoalveolar lavage fluid (BAL) protein content as well us by histopathological examination. Second, activities of serum xanthine oxidase (XO), pulmonary XO and oxygen free radical scavenging enzymes. XO tope conversion (O/D + O, %) ratio and content of reduced glutathione (GSH) were determined. In the histopathological findings, the vasodilation, local edema and hemorrhage were demonstrated in alveoli of lung. And vascular lumens filled with lipid droplets, increased macrophages in luminal margin and increased fibroblast-like interstitial cells in interstitial space were observed in electron micrographs. The introperitoneal treatment of cyclohexane dramatically increased BAL protein by 21-fold compared with control. Cyclohexane administration to rats led to a significant rise of serum and pulmonary XO activities and O/D + O ratio by 47%,30% and 24%, respectively, compared witれ control. Furthermore, activities of pulmonary oxygen free radical scavenging enzymes such as superoxide dismutase, glutathione peroxidase and glutathione S-transferase, and GSH content were not found to be statistically different between control and cyclohexane-treated rats. These results indicate that intraperitoneal injection of cyclohexane to rats may induce the lipid embolism in pulmonary blood vessel and lead to the hypoxia with the ensuing of oxygen free radical generation, and which may be responsible for the pulmonary injury.

The Effect of Highly Concentrated Oxygen Administration on Cerebrum Lateralization of Young Men during Visuospatial Task (고농도의 산소 공급이 공간지각 과제 수행 시 젊은 성인 남자의 대뇌 편측화에 미치는 영향)

  • 정순철;손진훈;김익현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.180-187
    • /
    • 2004
  • The present study attempted to investigate the effects of supply of highly concentrated (30%) oxygen on human ability of visuospatial cognition and cerebrum lateralization. compared to air of normal oxygen concentration (21%). The experiment consisted of two runs, one fur visuospatial cognition test with normal air (21% of oxygen) and for visuospatial cognition test with more oxygen in the air (30% of oxygen). Each run was composed of four blocks and each block included eight control tasks and five visuospatial tasks. Functional brain images were taken from 3T MRI using the single-shot EPI method. The result of task performance showed the accuracy increased at 30%'s concentration of oxygen rather than 21%'s. There were more activations observed at the left and right hemisphere, but there was decrease cerebrum lateralization with 30% oxygen administration. Thus, it is concluded that the positive effect on the visuospatial cognitive performance level by the highly concentrated oxygen administration was due to increase of cerebrum activation and decrease of cerebrum lateralization

Research for the Chemical Emergency Oxygen Supply and Lighting System for Aircraft Passengers (항공기 승객용 화학적 비상산소 공급 및 조명시스템에 대한 연구)

  • Kim, Young-In
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.55-60
    • /
    • 2022
  • A PSU (passenger service unit) is mounted on passenger seats in a cabin on an aircraft and consists of a crew call lamp, a reading lights, an information display lamp, an emergency oxygen generator, and an emergency oxygen mask. It is a safety device for providing convenience to passengers and providing oxygen to passengers in an emergency. This paper is a study on emergency oxygen supply systems and light systems of aircraft PSUs and a control device was developed to operate the system by analyzing the B767-300 aircraft's PSU circuit diagram. And the temperature generated by the B777-200ER aircraft's emergency oxygen generator was also measured by operating it directly. Through this, precautions for explaining the operation of an oxygen mask in an emergency were described and improvements were presented. Data acquired in these research processes can be used in the future to develop aircraft PSU (passenger service unit) and emergency oxygen generators.

The Effects of Hyperbaric Oxygen Therapy on Extraction Wound Healing of Streptozotocin-Induced Diabetic Rats. (당뇨백서 발치창 치유시 고압산소 요법이 미치는 영향에 관한 실험적 연구)

  • Jun, Dong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.12 no.1
    • /
    • pp.14-26
    • /
    • 1990
  • This study was undertaken to observe the histopathologic changes of the extraction wounds of diabetic rats when exposed to hyperbaric oxygen. A total of 50 rats (Spraque-Dawley strain) were used, which were all induced with diabetes using streptozotocin before the experiment. The experimental group was exposed to hyperbaric oxygen at 2.5atm. for 2 hours a day during the experimental period. The obtained results were summarized as follows : 1. Severe infiltration of inflammatory cells was observed in the initial stages of both the control and experimental groups. The infiltration showed a decreasing tendency at 3rd week in the experimental group, while severe inflammatory infiltration observed in the control group during the entire experimental period. 2. There was abundant proliferation of capillary blood vessels at 1st week after extraction in the experimental group, while moderate capillary growth in the control group was observed at 1st week after extraction. 3. Osteoblastic activity was started at 1st week after extraction in the experimental group, but there showed markedly delayed appearance in the control group, which showed at 2nd week after extraction. 4. The proliferation of fibroblasts showed rather in the experimental group at 1st week, but it was moderate in the control group at 1st week, 2nd week and 3rd week. 5. Epithelialization of the extraction wound was started at 2 days after extraction and reached its peak at 3rd week in the experimental group, while control group seemed to be delayed and incompleted during the experiment. With regard to these results, hyperbaric oxygen therapy disclosed an effective results on the healing of the extraction wound in diabetic rats under exposure at 2.5 atm for 2 hours daily.

  • PDF

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

Oligomerized polyphenols in lychee fruit extract supplements may improve high-intensity exercise performance in male athletes: a pilot study

  • Kawamura, Aki;Hashimoto, Shun;Suzuki, Miho;Ueno, Hiromasa;Sugita, Masaaki
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • [Purpose] Excessive reactive oxygen species (ROS) induced by prolonged high-intensity exercise can cause structural and functional damage. Antioxidant polyphenol supplementation, which reduces ROS levels, may improve high-intensity exercise performance. We evaluated the effect of lychee fruit extract, which contains high levels of low-molecular-weight oligomerized polyphenols, on high-intensity exercise performance. [Methods] Ten male athletes were included in an open-label trial that consisted of control and intervention phases, with a 7-day washout period between phases. The participants were administered oligomerized lychee fruit extract for seven days, whereas no intervention was given in the control phase. High-intensity intermittent exercise and the Wingate test were performed. The power output, blood lactate levels, reactive oxygen metabolite levels, biological antioxidant potential, heart rate, and rate of perceived exertion were measured. [Results] The average power output was significantly higher in the intervention phase than in the control phase (P < 0.01), while the change in blood lactate levels was significantly lower in the intervention phase than in the control phase (P < 0.05). The average heart rate was significantly higher in the intervention phase than in the control phase (P < 0.05), without changing the rate of perceived exertion. Although there was no difference in reactive oxygen metabolite levels between the phase, the change in biological antioxidant potential was larger in the intervention phase than in the control phase (P = 0.06). The Wingate test showed no significant differences between the phase. [Conclusion] Short-term loading with oligomerized lychee fruit extract may increase performance during high-intensity intermittent exercise by improving metabolism.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Effects of Hyperoxia on 8-Hydroxydeoxyguanosine Formation in Carbon Monoxide Exposed Rats (일산화탄소 중독시 고압산소투여가 8-hydroxydeoxyguanosine 생성에 미치는 영향)

  • Kim, Heon;Cho, Soo-Hun;Chung, Myung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.84-106
    • /
    • 1994
  • Hyperbaric oxygen (HBO) therapy for carbon monoxide (CO) poisoning eventually inducing the hypoxia-reoxygenation condition, may produce oxygen free radicals, which forms 8-hydroxydeoxyguanosine (8-OH-dG) by attacking C-8 position of deoxyguanosine (dG) in DNA. Effects of oxygen partial pressure or duration of HBO therapy with or without CO poisoning on the tissue 8-OH-dG formation were investigated. Male Sprague-Dawley rats were grouped and exposed to air (control group), 4000 ppm of CO for 10 to 30 minutes (CO only group), air for 30 minutes after 30 minute exposure to 4000 ppm of CO(CO-air exposure group), HBO after 30 minute exposure to 4000 ppm of CO(CO-HBO group), or HBO therapy fo. $10{\sim}120$ minutes(HBO only group). The 8-OH-4G concentrations in the brain and the lung tissues were measured with high performance liquid chromatography and electrochemical detector (ECD). Average concentrations of the 8-OH-dG of each group were statistically compared. In the brain tissues, 8-OH-dG concentrations of the CO only group, the CO-air exposure group, and the CO-HBO group did not significantly differ from those of the control group. Similar insignificance was also found between the CO-HBO group and the HBO only groups. No appreciable dose-response relationship was observed between the 8-OH-dG concentration and the oxygen partial pressure or the duration of HBO. However, the 8-OH-dG concentrations of the 30 minute CO only group were higher than those of the CO-air exposure group (p-value<0.05). In the lung tissues, there were no significant differences between the 8-OH-dG concentrations of the control group and those of the CO only group, the CO-air exposure group, and the CO-HBO group. However, mean 8-OH-dG concentration of the CO-air exposure group was significantly higher than that of the CO only group under the same CO exposure condition(p-value<0.05). With the duration of CO exposure, the 8-OH-dG concentrations of the lung tissues decreased significantly (p-value<0.05). The concentrations of 8-OH-dG in the lung tissues proportionally increased with the duration of HBO, but no such relation was observed with the oxygen partial pressure. These results suggest that the brain may be more resistant to oxygen free radicals as compared with the lungs, and that oxygen toxicity following HBO may be affected by factors other than oxygen free radicals.

  • PDF

Adaptive Control of Denitrification by the Extended Kalman Filter in a Sequencing Batch Reactor (확장형칼만필터에 의한 연속회분식반응조의 탈질 적응제어)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.829-836
    • /
    • 2006
  • The reaction rate of denitrification is primarily affected by the utilization of organics that are usually limited in the anoxic period in a sequencing batch reactor. It is necessary to add an extemal carbon source for sufficient denitrification. An adaptive model of state-space based on the extended Kalman filter is applied to manipulate the dosage rate of extemal carbon automatically. Control strategies for denitrification have been studied to improve control performance through simulations. The normal control strategy of the constant set-point results in the overdosage of external carbon and deterioration of water quality. To prevent the overdosage of external carbon, improved control strategies such as the constrained control action, variable set-point, and variable set-point after dissolved oxygen depletion are required. More stable control is obtained through the application of the variable set-point after dissolved oxygen depletion. The converging value of the estimated denitrification coefficient reflects conditions in the reactor.