• Title/Summary/Keyword: Oxygen Balance

Search Result 153, Processing Time 0.021 seconds

Reaction Characteristics of Cu/CeO2 Catalysts for CO Oxidation (일산화탄소 산화반응을 위한 Cu/CeO2 촉매의 반응특성)

  • Kim, Su Bin;Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.620-626
    • /
    • 2019
  • In this study, the effects of the structural properties of the catalyst on CO oxidation reaction by controlling the $Cu/CeO_2$ catalyst amount and calcination temperature were studied, and also the CO conversion rate of the catalyst at the temperature range of $100{\sim}300^{\circ}C$ was evaluated. XRD, Raman, BET, $H_2-TPR$, and XPS analyses were performed to confirm the effect of changes in the structural properties on the chemical properties of the catalyst. The result confirmed that a substitution bond between Cu and Ce was formed and a lot of Cu and Ce bonds were formed when the catalyst carrying 5 wt.%. Of Cu was calcined at $400^{\circ}C$. The Cu-Ce binding was confirmed by peak shifts in Raman analysis and also peaks appeared in $H_2-TPR$. In addition, the balance state analysis demonstrated that a lot of surface labile oxygen molecules are formed, which can be more easily contributed to the reaction with $Ce^{3+}$ species known to form a substitution bond easily. It was found that CO conversion rate of the catalyst used in this study was close to 100% at $150^{\circ}C$.

Biogeochemical Organic Carbon Cycles in the Intertidal Sandy Sediment of Nakdong Estuary (낙동강 하구 갯벌 사질 퇴적물에서 생지화학적 유기탄소순환)

  • Lee, Jae-Seong;Park, Mi-Ok;An, Soon-Mo;Kim, Seong-Gil;Kim, Seong-Soo;Jung, Rae-Hong;Park, Jong-Soo;Jin, Hyun-Gook
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • In order to understand biogeochemical cycles of organic carbon in the permeable intertidal sandy sediments of the Nakdong estuary, we estimated the organic carbon production and consumption rates both in situ and in the laboratory. The Chl-a content of the sediment and the nutrient concentrations in below surface pore water in the sandy sediment were lower than in the muddy sediment. The sediment oxygen consumption rates were relatively high, especially when compared with rates reported from other coastal muddy sediments with higher organic carbon contents. This implied that both the organic carbon degradation and material transport in the sandy sediment were enhanced by advection-related process. The simple mass balance estimation of organic carbon fluxes showed that the major sources of carbon in the sediment would originate from benthic microalgae and detrital organic carbon derived from salt marsh. The daily natural biocatalzed filtration, extrapolated from filtration rates and the total area of the Nakdong estuary, was one order higher than the maximum capability of sewage plants in Busan metropolitan city. This implies that the sandy sediment contributes greatly to biogeochemical purification in the area, and is important for the re-distribution of materials in the coastal environment.

Kinetics of Oxidation, and Effects of TiC on Oxidation Resistance in MgO-Carbon Refractory (MgO-Carbon 내화물의 산화반응기구와 TiC첨가에 의한 산화방지 효과)

  • Cheon, Sungho;Kong, Hyunsik;Jun, Byungsei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.657-662
    • /
    • 2004
  • The kinetics of oxidation and disappearance of graphite in MgO-C refractories containing TiC were, in the temperature range from 1000 to 1200$^{\circ}C$, investigated to enhance the oxdation resistance of MgO-C refractproes. The air was blown into the furnace at flow rate of 0.2 litters per minute, and then weight decrease was measured with a thermo balance at 30 seconds intervals until the value of weight became unchanged. The value of effective diffusion coefficient (De) for the specimen of MgO-C was 1.39${\times}$10$\^$-4/ ㎡/sec. The diffusion of oxygen through decarburized layer was the rate deforming step in the overall oxidation process under present experimental conditions. The TiC additions enhanced the oxidation resistance of the MgO-C refractories.

The Effect of Tidal Cycle and River Runoff on the Dynamic of Nutrients in Keum river estuary (금강하구역에서 영양염 거동에 대한 조석 및 담수유출의 영향)

  • Kim, Jong-Gu;Kang, Hoon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.519-528
    • /
    • 2002
  • This study was to evaluate the impact of river runoff and salt intrusion by tide on nutrient balance of estuary during a complete tidal cycle. 24 hours time series survey was carried out during a spring tide July 2001 on a tidal estuary in the Keum river. Three stations(A,B,C) were set along a transect line of about 10km, which linked the lower part of estuary dyke to the subtidal zone. Surface water was sampled simultaneously at each station every hours f3r the determination of nutrients. Water temperature, pH and dissolved oxygen were measured in situ. Riverine input of silicate and nitrate during ebb tide significantly increased the concentration of all stations. Conversely, during high tide, nutrient concentration were lowered by the mixing of fresh water with sea water Ammonium nitrogen concentration were higher at intertidal zone(Stn.B) due to sewage inflow to Kyeongpo stream and ammonium release under anaerobic conditions. Also, these results was discussed as a biological component that influences the processes of nutrient regeneration within the estuary. Best correlations were found at lower part of estuary dyke(Stn.A) for salinity against DIN(Y=0.121 Sal.+4.97, r2=0.956) and silicate(Y=0.040 Sal.+2.62, r2=0.785). But no significant correlation was found between salinity and ammonium. Unbalanced elemental ratio(N/P, Si/N and Si/P) depended significantly on the import of nutrients (silicate & nitrate nitrogen) from river and stream. The effect of the tidal cycle and river runoff is important that in determining the extend of the variations in nutrient concentrations at all station.

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

Spatial Abundance and Diversity of Bacterioplankton in a Typical Stream-Forming Ecosystem, Huangqian Reservoir, China

  • Wei, Guangshan;Li, Jing;Wang, Ningxin;Gao, Zheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1308-1318
    • /
    • 2014
  • The specific freshwater environment of reservoirs formed by streams has not been well studied. In this paper, the bacterioplankton community in such a reservoir, the Huangqian Reservoir in eastern China, was described using culture-independent molecular methods. We found that the most dominant bacterioplankton were affiliated with Cyanobacteria, followed by Betaproteobacteria, Bacteroidetes, Gammaproteobacteria, and Actinobacteria. Both bacterial abundance and diversity increased along the direction of water flow, and the 16S rRNA gene copy number in the water outlet was nearly an order of magnitude higher than that in the water inlet. Pearson correlation analyses indicated that nitrate had a significantly negative correlation with the bacterial abundance (p < 0.05) and that ammonium was positively correlated with bacterial abundance (p < 0.05). Interestingly, owing to a remarkably negative correlation (p < 0.01), the ratio of nitrate and ammonium might serve as a good pre dictor of the relative abundance of bacterioplankton. According to redundancy analysis, nitrate and dissolved oxygen were the major factors influencing the bacterial communities. In addition, we attempted to determine the reasons why such a reservoir could maintain good ecological balance for a period of decades, and we found that the environmental factors and bacterial communities both played critical roles. This research will benefit our understanding of bacterial communities and their surrounding environments in freshwater ecosystems.

Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구)

  • Lee, Soon-Yong;Seo, Won-Bum;Lim, Ji-Seon;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts (망간촉매하에서 암모니아의 선택적 산화반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig;Cha, Wang Seog
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.498-505
    • /
    • 2008
  • The selective catalytic oxidation of ammonia was carried out in the presence of natural manganese ore (NMO) and manganese as catalysts using a homemade 1/4" reactor at $10,000hr^{-1}$ of space velocity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. The manganese catalyst resulted in a substantial ammonia conversion, with adsorption activation energies of oxygen and ammonia of 10.5 and 22.7 kcal/mol, respectively. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported manganese catalyst was applied. Increasing the manganese weight percent by 15 wt% increased the lower temperature activity, but 20 wt% of manganese had an adverse effect on the reaction results. An important finding of the study was that the manganese catalyst benefits from a strong sulfur tolerance in the conversion of ammonia to nitrogen.

Wet Synthesis of Hydroxylammonium Nitrate (HAN) and Solid Phase Extraction Using Dual Organic Solvents (수산화암모늄나이트레이트(HAN)의 습식합성 및 이중 유기용매를 이용한 고체상 추출)

  • Kim, Sohee;Kwon, Younja;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.317-322
    • /
    • 2020
  • Hydroxylammonium nitrate (HAN; NH3OHNO3) is an ionic energy material having a low melting temperature and vapor pressure with a high oxygen balance. To utilize it as an oxidizer for a high content liquid mono-propellant, a dual solvent was used to obtain HAN in a solid particulate form. The dehydrated crystal from an aqueous HAN was washed with dual organic solvents including acetone and ethanol, finally resulting in the moisture content of 13.8 wt%. When acetone was applied as a single solvent, the maximum synthesis yield of 88%, the HAN content evaluated by TGA of 86.2%, and the decomposition temperature ranged 160℃ to 205℃ were achieved.