Browse > Article
http://dx.doi.org/10.14478/ace.2019.1067

Reaction Characteristics of Cu/CeO2 Catalysts for CO Oxidation  

Kim, Su Bin (Department of Environmental Energy Engineering, Kyonggi University)
Kim, Min Su (Department of Environmental Energy Engineering, Kyonggi University)
Kim, Se Won (Korea Institute of Industrial Technology, Thermochemical Energy System Group)
Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.30, no.5, 2019 , pp. 620-626 More about this Journal
Abstract
In this study, the effects of the structural properties of the catalyst on CO oxidation reaction by controlling the $Cu/CeO_2$ catalyst amount and calcination temperature were studied, and also the CO conversion rate of the catalyst at the temperature range of $100{\sim}300^{\circ}C$ was evaluated. XRD, Raman, BET, $H_2-TPR$, and XPS analyses were performed to confirm the effect of changes in the structural properties on the chemical properties of the catalyst. The result confirmed that a substitution bond between Cu and Ce was formed and a lot of Cu and Ce bonds were formed when the catalyst carrying 5 wt.%. Of Cu was calcined at $400^{\circ}C$. The Cu-Ce binding was confirmed by peak shifts in Raman analysis and also peaks appeared in $H_2-TPR$. In addition, the balance state analysis demonstrated that a lot of surface labile oxygen molecules are formed, which can be more easily contributed to the reaction with $Ce^{3+}$ species known to form a substitution bond easily. It was found that CO conversion rate of the catalyst used in this study was close to 100% at $150^{\circ}C$.
Keywords
CO oxidation; $Cu/CeO_2$; Low temperature; Non-noble; Catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Singhania and S. M. Gupta, Low-temperature CO oxidation over Cu/Pt co-doped $ZrO_2$ nanoparticles synthesized by solution combustion, Beilstein J. Nanotechnol., 8, 1546-1552 (2017).   DOI
2 S. Li, H. Zhu, Z. Qin, G. Wang, Y. Zhang, Z. Wu, Z. Li, G. Chen, W. Dong, Z. Wu, L. Zheng, J. Zhang, T. Hu, and J. Wang, Morphologic effects of nano $CeO_2$-$TiO_2$ on the performance of Au/$CeO_2$-$TiO_2$ catalysts in low-temperature CO oxidation, Appl. Catal. B, 114, 498-506 (2014).
3 F. J. Gracia, S. Guerrero, E. E. Wolf, J. T. Miller, and A. J. Kropf, Kinetics, operando FTIR, and controlled atmosphere EXAFS study of the effect of sulfur on Pt-supported catalysts during CO oxidation, J. Catal., 233, 372-387 (2005).   DOI
4 W. Liu, A. F. Sarofim, and M. Flytzani-Stephanopoulos, Complete oxidation of carbon monoxide and methane over metal-promoted fluorite oxide catalysts, Chem. Eng. Sci., 49, 4871-4888 (1994).   DOI
5 Y. Y. Song, L. Y. Du, W. W. Wang, and C. J. Jia, $CeO_2@SiO_2$ core-shell nanostructures supported CuO as high-temperature tolerant catalysts for CO oxidation, Langmuir, 35, 8658-8666 (2019).   DOI
6 S. Sun, D. Mao, and J. Yu, Enhanced CO oxidation activity of CuO/$CeO_2$ catalyst prepared by surfactant-assisted impregnation method, J. Rare Earths, 33, 1268-1274 (2015).   DOI
7 Y. Li, Y. Cai, X. Xing, N. Chen, D. Deng, and Y. Wang, Catalytic activity for CO oxidation of Cu-$CeO_2$ composite nano particles synthesized by a hydrothermal method, Anal. Methods, 7, 3238-3245 (2015).   DOI
8 S. A. Mock, S. E. Sharp, T. R. Stoner, M. J. Radetic, E. T. Zell, and R. Wang, $CeO_2$ nanorods-supported transition metal catalysts for CO oxidation, J. Colloid Interface Sci., 466, 261-267 (2016).   DOI
9 S. T. Hossain, Y. Almesned, K. Zhang, E. T. Zell, D. T. Bernard, S. Balaz, and R. Wang, Support structure effect on CO oxidation: A comparative study on $SiO_2$ nanospheres and $CeO_2$ nanorods supported CuOx catalysts, Appl. Surf., 428, 598-608 (2018).   DOI
10 S. Dey, G. C. Dhal, D. Mohan, R. Prasad, and R. N. Gupta, Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide, Appl. Surf. Sci., 441, 303-316 (2018).   DOI
11 Q. Tan, Z. Shi, and D. Wu, $CO_2$ hydrogenation over differently morphological $CeO_2$-supported Cu-Ni catalysts, Int. J. Energy Res., 43, 5392-5404 (2019).   DOI
12 L. Du, W. Wang, H. Yan, X. Wang, Z. Jin, Q. Song, R. Si, and C. Jia, Copper-ceria sheets catalysts: Effect of copper species on catalytic activity in CO oxidation reaction, J. Rare Earths, 35, 1186-1196 (2017).   DOI
13 M. Lykaki, E. Pachatouridou, S. A. C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, and M. Konsolakis, Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/$CeO_2$ catalysts, Appl. Catal. B, 230, 18-28 (2018).   DOI
14 F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, Cerium oxide nanoparticles: Size-selective formation and structure analysis, Appl. Phys. Lett., 80, 127-129 (2002).   DOI
15 L. Qin, Y. Q. Cui, T. L. Deng, F. H. Wei, and X. F. Zhang, Highly stable and active Cu1/$CeO_2$ single-Atom Catalyst for CO oxidation: A DFT study, Chem. Phys. Chem., 23, 1002-1011 (2018).
16 S. T. Hossain, E. Azeeva, K. Zhang, E. T. Zell, D. T. Bernard, S. Balaz, and R. Wang, A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/$CeO_2$ nanorods catalysts, Appl. Surf., 455, 132-143 (2018).   DOI
17 Z. V. Popovic, Z. Dohcevic-Mitrovic, A. Cros, and A. Cantarero, Raman scattering study of the anharmonic effects in $CeO_2-{\gamma}$, nanocrystals, J. Phys. Condens. Matter, 19, 496209 (2007).   DOI
18 M. F. Luo, J. M. Ma, J. Q. Lu, Y. P. Song, and Y. J. Wang, High-surface area CuO-$CeO_2$ catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, J. Catal., 246, 52-59 (2007).   DOI
19 J. S. Elias, K. A. Stoerzinger, W. T. Hong, M. Risch, L. Giordano, A. N. Mansour, and Y. Shao-Horn, In situ spectroscopy and mechanistic insights into CO oxidation on transition-metal-substituted ceria nanoparticles, ACS Catal., 7, 6843-6857 (2017).   DOI