Browse > Article
http://dx.doi.org/10.7850/jkso.2007.12.4.349

Biogeochemical Organic Carbon Cycles in the Intertidal Sandy Sediment of Nakdong Estuary  

Lee, Jae-Seong (Marine Environment Research Team, Marine Environment Division, NFRDI)
Park, Mi-Ok (Marine Environment Research Team, Marine Environment Division, NFRDI)
An, Soon-Mo (Department of Marine Science, Pusan National University)
Kim, Seong-Gil (Marine Environment Research Team, Marine Environment Division, NFRDI)
Kim, Seong-Soo (Marine Environment Research Team, Marine Environment Division, NFRDI)
Jung, Rae-Hong (Marine Environment Research Team, Marine Environment Division, NFRDI)
Park, Jong-Soo (Marine Environment Research Team, Marine Environment Division, NFRDI)
Jin, Hyun-Gook (Marine Enivironment Team, East Sea Fisheries Institute, NFRDI)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.12, no.4, 2007 , pp. 349-358 More about this Journal
Abstract
In order to understand biogeochemical cycles of organic carbon in the permeable intertidal sandy sediments of the Nakdong estuary, we estimated the organic carbon production and consumption rates both in situ and in the laboratory. The Chl-a content of the sediment and the nutrient concentrations in below surface pore water in the sandy sediment were lower than in the muddy sediment. The sediment oxygen consumption rates were relatively high, especially when compared with rates reported from other coastal muddy sediments with higher organic carbon contents. This implied that both the organic carbon degradation and material transport in the sandy sediment were enhanced by advection-related process. The simple mass balance estimation of organic carbon fluxes showed that the major sources of carbon in the sediment would originate from benthic microalgae and detrital organic carbon derived from salt marsh. The daily natural biocatalzed filtration, extrapolated from filtration rates and the total area of the Nakdong estuary, was one order higher than the maximum capability of sewage plants in Busan metropolitan city. This implies that the sandy sediment contributes greatly to biogeochemical purification in the area, and is important for the re-distribution of materials in the coastal environment.
Keywords
Intertidal Flat; Sandy Sediment; Sediment Oxygen Consumption; Organic Carbon; Material Transport;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 김동선, 2006. 강화도 남부 갯벌퇴적물에서 산소 미세전극을 이용한 산소소모율 추정. Ocean and Polar Research. 28(2): 119-127   DOI
2 안순모, 2007. 훼손된 자연 생태계 복원기술: 낙동강 하구역 습지 생태계 훼손지역 복원 및 관리기술. 환경부, 051-061-013, 288p
3 이재성, 김기현, 유준, 정래홍, 고태승, 2003. 산소미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소산화율 추정. 한국해양학회지, 바다. 8: 392-400
4 Billerbeck, M., H. Roy, K. Bosselmann, and M. Huettel, 2007. Benthic photosynthesis in submerged Wadden Sea intertidal flats, Estuarine, Coastal and Shelf Science, 71: 704-716   DOI   ScienceOn
5 de Beer, D., F. Wenzhofer, T.G. Ferdelman, S.E. Boehme, and M. Huettel, J.E.E. van Beusekom, M.E. Bottcher, N. Musat, and N. Dubilier, 2005. Transport and mineralization rates in North Sea sandy intertidal sediment, Sylt-Romo Basin, Wadden Sea. Limnol. Oceanogr., 50(1): 113-127   DOI   ScienceOn
6 Ehrenhauss, S. and M. Huettel, 2004. Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments. J. Sea Res., 52: 179-197   DOI   ScienceOn
7 Frank, U., L. Polerecky, E. Precht, and M. Huettel, 2006. Wave tank study of particulate organic matter degradation in permeable sediments, Limnol. Oceangr., 51(2): 1084-1094   DOI
8 Hancke, K. and Glud, R.N., 2004. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquatic Microbial Ecology, 37: 256-281
9 Janssen, F., M. Huettel, and U. Witte, 2005a. Pore-water advection and solute fluxes in permeable marine sediments (I): Calibration and performance of the novel benthic chamber system Sandy. Limnol. Oceanogr., 50: 768-778   DOI   ScienceOn
10 Janssen, F., M. Huettel, and U. Witte, 2005b. Pore-water advection and solute fluxes in permeable marine sediments (II): Benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol. Oceanogr., 50: 779-792   DOI   ScienceOn
11 Rusch, A. and M. Huettel, 2000. Advective particle transport into permeable sediments-evidence from experimental in an intertidal sandflat. Limnol. Oceanogr., 45: 525-533   DOI   ScienceOn
12 Thamdrup, B., J.W. Hansen, and B.B. Jorgensen, 1998. Temperature dependence of aerobic respiration in a coastal sediment, FEMS Microbiol. Ecol., 25: 189-200   DOI   ScienceOn
13 Wieland, A. and M. Kuhl, 2000. Irradiance and temperature regulation of oxygenic photosynthesis and $O_{2}$ consumption in a hypersaline cyanobacterial mat. Mar. Biol., 137: 71-85   DOI
14 이재성, 정래홍, 김기현, 권정노, 이원찬, 이필용, 구준호, 최우정, 2004. 해상 어류가두리양식장의 환경영향평가: I. 퇴적물 산소소모율 및 저서동물을 이용한 유기물 오염영향권 추정 및 유기탄소 순환, 한국해양학회지, 바다. 9: 30-39
15 Huettel, M. and I.T. Webster, 2001. Porewater flow in permeable sediments, p. 144-179. In B.P. Boudreau and B.B. Jorgensen [eds.], The benthic boundary layer. Oxford Univ. Press
16 Glud, R.N., S. Forster, and M. Huettel, 1996. Influence of radial pressure gradients on solute exchange in stirred benthic chambers. Mar. Ecol. Prog. Ser., 141: 303-311   DOI
17 Huettel, M. and G. Gust, 1992. Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar. Ecol. Prog. Ser., 89: 253-267   DOI
18 Precht, E. and M. Huettel, 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implication. Limnol., Oceanogr., 48(4): 1674-1684   DOI   ScienceOn
19 Polerecky, L., U. Franke, U. Werner, B. Grunwald, and D. de Beer, 2005. High spatial resolution measurement of oxygen consumption rates in permeable sediments. Limnol. Oceanogr.: Methods, 3: 75-85   DOI
20 Kang, C. K., E. J Choy, S. Paik, H. Park, K. Lee, S. An, 2007. Contributions of primary organic matter sources to macroinvertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Mar. Ecol. Prog. Ser., 334: 131-143   DOI
21 Kuhl, M., R.N. Glud, H. Ploug and N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-coupling respiration in an epilithic cyanobacterial biofilm. J. Phyco., 32: 799-812   DOI   ScienceOn
22 정창수, 김석현, 강동진, 박용철, 윤철호, 홍기훈, 1999. 해저퇴적물의 광합성 색소 유도체 함량분포에 의한 마산만 부영양화 진행 과정 추정. 한국해양학회지, 바다. 4: 101-106
23 Ullman, W.J. and R.C. Aller, 1982. Diffusion coefficients in near shore marine sediments. Limnol. Oceanogr., 27: 552-556   DOI   ScienceOn
24 Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain size parameters. J. Sed. Pet., 27: 3-26   DOI
25 부산광역시, 2006. 2006 환경백서. 52-6260000-000115-10, 238p
26 Berg, P., H. Roy, F. Janssen, V. Meyer, B.B. Jorgensen, M. Huettel, and D. de Beer, 2003. Oxygen uptake by aquatic sediment measured with a novel-invasive eddy correction technique. Mar. Ecol. Prog. Ser., 261: 75-83   DOI
27 Migne, A., N. Spilmont, and D. Davoult, 2004. In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France), Continental Shelf Research, 24: 1437-1449   DOI   ScienceOn
28 Werner, U., M. Billerbeck, L. Polerecky, U. Franke, M. Huettel, J.E.E. van Beusekom, and D. de Beer, 2006. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, German). Limnol. Oceanogr., 51(6): 2549-2563   DOI   ScienceOn
29 Boudreau, B.P., M. Huettel, S. Forster, R.A. Jahnke, A. McLachlan, J.J. Middelburg, P. Nielsen, F. Sanson, G. Taghon, W.V. Raaphorst, I. Webster, J. M. Weslawski, P. Wiberg, and B. Sundby, 2001. Permeable marine sediments: overturning and old paradigm. EOS, 82(11): 133-140
30 Broecker W.S. and T.H. Peng, 1974. Gas exchange rates between air and sea. Tellus, 72: 248-254
31 Reimers, C.E., H.A. Stecher III, G.L. Taghon, C.M. Fuller, M. Huettel, A. Rusch, N. Ryckelynck, and C. Wild, 2004. In situ measurement of advective solute transport in permeable shelf sediments, Continental Shelf Research, 24: 183-201   DOI   ScienceOn
32 해양수산부, 2005. 해양환경공정시험방법. 400p
33 Revsbech, N.P. and B.B. Jorgensen, 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations of the method, Limnol. Oceanogr., 28: 749-756   DOI   ScienceOn
34 Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore and M. Taniguchi, 2003. Groundwater and porewater inputs to the coastal zone. Biogeochemistry, 66: 3-33   DOI   ScienceOn
35 Epping, E.H.G., A. Khalili and R. Thar, 1999. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles. Limnol. Oceanogr., 44(8): 1936-1948   DOI   ScienceOn
36 Gattuso, J.P., M. Frankignoulle, and R. Wollast, 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29: 405-434   DOI
37 Huettel, M., and A. Rusch, 2000. Transport and degradation of phytoplankton in permeable sediment, Limnol. Oceangr., 45(3): 543-549